【題目】如圖①,在等腰直角三角形中,,,D,E分別在上,且,此時有,.
(1)如圖①中 繞點A旋轉(zhuǎn)至如圖②時上述結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
(2)將圖①中的繞點A旋轉(zhuǎn)至DE與直線AC垂直,直線BD交CE于點F,若,,請畫出圖形,并求出BF的長.
【答案】(1)仍然成立;(2)畫圖見解析;長為或.
【解析】
(1)結(jié)論:BD=CE,BD⊥CE.如圖1中,延長BD交CE的延長線于H.證明△BAD≌△CAE(SAS),即可解決問題;(2)分兩種中情況分別求解①當逆時針旋轉(zhuǎn)角度是45°時,②當逆時針旋轉(zhuǎn)角度是225°時,先證明△ABD≌△ACE(SAS),從而求解DE,EC 的邊長,再通過角的代換證明BF⊥EC,再證明Rt△DEF∽Rt△CEG,通過對應(yīng)邊成比例,求出FC的長度,最后再直角三角形△BCF用勾股定理求得BF的長度.
解:(1) 仍然成立
延長交于點,
和都是等腰直角三角形,
,,
,
,
,
,
, ,
;
(2)如圖,長為或,
∵DE與直線AC垂直,
①當逆時針旋轉(zhuǎn)角度是45°時,如圖2:
在△ABD和△ACE中,
AE=AD,∠BAD=∠CAE=45°,AB=AC,
∴△ABD≌△ACE(SAS)
∴BD=EC,
∵AB=20,AD=5,
∴AC=20,AE=5,
∵∠DAE=90°,
∴DE=10,
∵△AED是等腰直角三角形,
∴AG=GE=5,
∴GC=15,
在直角三角形GEC中,EC=5,
又∵∠ABD=∠ACE,∠BCA=45°,∠ABC=45°,
∴∠DBC+∠BCA+∠ACE=90°,
∴BF⊥EC,
∵∠EFD=∠EGC=90°,∠EDF=∠ECG,
∴Rt△DEF∽Rt△CEG,
∴ ,
∴,
∴EF=,
∴FC=4,
在Rt△ABC中,BC=20,
在Rt△BCF中,BF=;
②當逆時針旋轉(zhuǎn)角度是225°時,如圖3,
在△ABD和△ACE中,
AE=AD,BAD=∠CAE=45°,AB=AC,
∴△ABD≌△ACE(SAS)
∴BD=EC,
∵AB=20,AD=5,
∴AC=20,AE=5,
∵∠DAE=90°,
∴DE=10,
∵△AED是等腰直角三角形,
∴AG=GE=5,
∴GC=25,
在直角三角形GEC中,EC=5,
又∵∠ABD=∠ACE,∠ABC=45°,∠ACB=45°,
∴∠DBA+∠ABC+∠ACE=90°,
∴BF⊥EC,
∵∠EFD=∠EGC=90°,∠EDF=∠ECG,
∴Rt△DEF∽Rt△CEG,
∴,
∴,
∴EF=,
∴FC=,
在Rt△ABC中,BC=20,
在Rt△BCF中,BF=;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若正整數(shù)a,b,c(a<b<c)滿足a2+b2=c2,則稱(a,b,c)為一組“勾股數(shù)”.
觀察下列兩類“勾股數(shù)”:
第一類(a是奇數(shù)):(3,4,5);(5,12,13);(7,24,25);…
第二類(a是偶數(shù)):(6,8,10);(8,15,17);(10,24,26);…
(1)請再寫出兩組勾股數(shù),每類各寫一組;
(2)分別就a為奇數(shù)、偶數(shù)兩種情形,用a表示b和c,并選擇其中一種情形證明(a,b,c)是“勾股數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點O在BC邊上,以OC為半徑作⊙O,與AB切于點D,與邊BC,AC分別交于點E,F,且弧DE=弧DF.
(1)求證:△ABC是直角三角形.
(2)連結(jié)CD交OF于點P,當cos∠B=時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計,現(xiàn)從該校隨機抽取n名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:
(1)請直接補全條形統(tǒng)計圖;
(2)若該校共有學(xué)生3200名,試估計該校喜愛看課外書的學(xué)生人數(shù)。
(3)若被調(diào)查喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,請用列表或畫樹狀圖的方法求恰好抽2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料
計算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,則:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=
在上面的問題中,用一個字母代表式子中的某一部分,能達到簡化計算的目的,這種思想方法叫做“換元法”,請用“換元法”解決下列問題:
(1)計算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)
(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4
(3)解方程:(x2+4x+1)(x2+4x+3)=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,且AB=2CD,E,F分別是AB,BC的中點,EF與BD交于點H.
(1)求證:四邊形DEBC是平行四邊形;
(2)若BD=6,求DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知AB⊥BC于點B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB=60°,點H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點E,已知AH長米,HF長米,HE長1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板底部點E到地面的距離.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com