【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為A10),等腰直角三角形ABC的邊ABx軸的正半軸上,∠ABC90°,點(diǎn)B在點(diǎn)A的右側(cè),點(diǎn)C在第一象限.將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)75°,如果點(diǎn)C的對應(yīng)點(diǎn)E恰好落在y軸的正半軸上,那么點(diǎn)C的坐標(biāo)為_____

【答案】

【解析】

依據(jù)旋轉(zhuǎn)的性質(zhì),即可得到∠OAE60°,再根據(jù)OA1,∠EOA90°,∠OAE60°,即可得出AE2,AC2.最后在RtABC中,可得到ABBC,進(jìn)而求得C點(diǎn)坐標(biāo).

解:依題可知,∠BAC45°,∠CAE75°ACAE,

∴∠OAE60°,

RtAOE中,OA1,∠EOA90°,∠OAE60°

AE2,

AC2

∴在RtABC中,

OB+1,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點(diǎn)叫做格點(diǎn).的頂點(diǎn)在格點(diǎn)上,僅用無刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實(shí)線表示,按步驟完成下列問題:

(1)將邊繞點(diǎn)順時針旋轉(zhuǎn)90°得到線段

(2)畫邊的中點(diǎn);

(3)連接并延長交于點(diǎn),直接寫出的值;

(4)上畫點(diǎn),連接,使

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的圖象,經(jīng)過點(diǎn)A1,0),B3,0),C0,3)三點(diǎn),過點(diǎn)C,D(﹣30)的直線與拋物線的另一交點(diǎn)為E

1)請你直接寫出:

拋物線的解析式   ;

直線CD的解析式   ;

點(diǎn)E的坐標(biāo)(   ,   );

2)如圖1,若點(diǎn)Px軸上一動點(diǎn),連接PC,PE,則當(dāng)點(diǎn)P位于何處時,可使得∠CPE45°,請你求出此時點(diǎn)P的坐標(biāo);

3)如圖2,若點(diǎn)Q是拋物線上一動點(diǎn),作QHx軸于H,連接QA,QB,當(dāng)QB平分∠AQH時,請你直接寫出此時點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把PBC沿直線PC折疊,頂點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)G,過點(diǎn)BBECG,垂足為E且在AD上,BEPC于點(diǎn)F.

(1)如圖1,若點(diǎn)EAD的中點(diǎn),求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當(dāng)AD=25,且AE<DE時,求cosPCB的值;

③當(dāng)BP=9時,求BEEF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在練習(xí)操控航拍無人機(jī),該型號無人機(jī)在上升和下落時的速度相同,設(shè)無人機(jī)的飛行高度為y(米),小明操控?zé)o人飛機(jī)的時間為x(分),yx之間的函數(shù)圖象如圖所示.

(1)無人機(jī)上升的速度為   /分,無人機(jī)在40米的高度上飛行了   分.

(2)求無人機(jī)下落過程中,yx之間的函數(shù)關(guān)系式.

(3)求無人機(jī)距地面的高度為50米時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點(diǎn)A(3,n).

(1)求實(shí)數(shù)a的值;

(2)設(shè)一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點(diǎn)B,若點(diǎn)C在y軸上,且S△ABC=2S△AOB,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)邊上點(diǎn),沿折疊,點(diǎn)在矩形內(nèi)部的對應(yīng)點(diǎn)為,若點(diǎn)到矩形兩條較長邊的距離之比為,則的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)一次函數(shù)y=ax+ba,b是常數(shù),且a0)的圖象A1,3)和B-1,-1)兩點(diǎn).

1)求該一次函數(shù)的表達(dá)式.

2若點(diǎn)( ,2)在(1)中的函數(shù)圖象上,求m的值.

若(1)中的函數(shù)圖象和y=-2x+n的函數(shù)圖象的交點(diǎn)在第一象限,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),點(diǎn) 的坐標(biāo)分別是,與軸交于點(diǎn).點(diǎn)在第一、二象限的拋物線上,過點(diǎn)軸的平行線分別交軸和直線于點(diǎn)、.設(shè)點(diǎn)的橫坐標(biāo)為,線段的長度為

⑴求這條拋物線對應(yīng)的函數(shù)表達(dá)式;

⑵當(dāng)點(diǎn)在第一象限的拋物線上時,求之間的函數(shù)關(guān)系式;

⑶在⑵的條件下,當(dāng)時,求的值.

查看答案和解析>>

同步練習(xí)冊答案