【題目】如圖,把直線y=﹣2x向上平移后,分別交y軸、x軸于AB兩點,直線AB經(jīng)過點(m,n)且2m+n=6,則點O到線段AB的距離為_____

【答案】

【解析】

平移時k的值不變,只有b發(fā)生變化.再把相應(yīng)的點代入即可求得直線AB的解析式,結(jié)合勾股定理求得AB的長度,然后利用等面積法求得h的值.

如圖,設(shè)點O到線段AB的距離為h,

原直線y=﹣2x中的k=﹣2,向上平移后得到了新直線,那么新直線的k=﹣2

∵直線AB經(jīng)過點(m,n),且2m+n6

∴直線AB經(jīng)過點(m62m).

可設(shè)新直線的解析式為y=﹣2x+b1,

把點(m62m)代到y=﹣2x+b1中,可得b16

∴直線AB的解析式是y=﹣2x+6

A0,6),B30).

OA6OB3

AB3

×3h×6×3

h

故答案是:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2)

(1)1中陰影部分面積為______,圖2中陰影部分面積為_____,對照兩個圖形的面積可以驗證________公式(填公式名稱)請寫出這個乘法公式________

(2)應(yīng)用(1)中的公式,完成下列各題:

①已知x24y215x+2y3,求x2y的值;

②計算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,小彬從該網(wǎng)店購買了3筒甲種羽毛球和2筒乙種羽毛球,一共花費270.

1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?

2)根據(jù)消費者需求,該網(wǎng)店決定購進甲、乙兩種羽毛球各80.已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40.元旦期間該網(wǎng)店開展優(yōu)惠促銷活動,甲種羽毛球打折銷售,乙種羽毛球售價不變,若所購進羽毛球均可全部售出,要使全部售出所購進的羽毛球的利潤率是,那么甲種羽毛球是按原銷售價打幾折銷售的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A城氣象臺測得臺風中心在A城正西方向320 kmB處,以每小時40 km的速度向北偏東60°BF方向移動,距離臺風中心200 km的范圍內(nèi)是受臺風影響的區(qū)域.

(1)A城是否受到這次臺風的影響?為什么?

(2)若A城受到這次臺風影響,那么A城遭受這次臺風影響有多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)

A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。

現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。

1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);

2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1 , O2 , O3 , … 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒 個單位長度,則第2016秒時,點P的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正比例函數(shù) 的圖象與反比例函數(shù) 在第一象限的圖象交于點 ,過點 軸的垂線,垂足為 ,已知△OAM的面積為1.

(1)求反比例函數(shù)的解析式;
(2)如果點 為反比例函數(shù)在第一象限圖象上的點(點 與點 不重合),且點 的橫坐標為1,在 軸上求一點 ,使 最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請根據(jù)圖示的對話解答下列問題.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y= (k≠0)與一次函數(shù)y=kx+k(k≠0)在同一平面直角坐標系內(nèi)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案