分析 (1)直接證明△AME≌△MNC即可.
(2)延長BA到E使得AE=CM,證明△AME≌△MNC即可.
解答 (1)證明:∵四邊形ABCD是正方形,
∴BA=BC,∠ABC=∠BCD=∠DCB=90°,
∵AE=CM,
∴BE=BM,
∴∠BEM=∠BME=45°,
∴∠AEM=180°-∠BEM=135°,
∵AM⊥MN,
∴∠AMN=90°,
∵∠EAM+∠AMB=90°,∠AMB+∠NMC=90°,
∴∠EAM=∠NMC,
∵CN平分∠DCP,
∴∠NCP=$\frac{1}{2}$∠DCP=45°,
∴∠NMC=180°-∠NCP=135°,
∴∠AEM=∠NCM,
在△AME和△MNC中,
$\left\{\begin{array}{l}{∠EAM=∠NMC}\\{AE=CM}\\{∠AEM=∠NCM}\end{array}\right.$,
∴△AME≌△MNC,
∴AM=MN.
(2)在圖2中,延長BA到E使得AE=CM,連接EM.
∵AB=BC,AE=CM,∠B=90°,
∴BE=BM,∠E=∠BME=45°,
∵∠BAM+∠AMB=90°,∠AMB+∠NMP=90°,
∴∠BAM=∠NMP,
∴∠EAM=∠NMC,
∵∠AEM=∠NCM=45°,
在△AME和△MNC中,
$\left\{\begin{array}{l}{∠EAM=∠NMC}\\{AE=CM}\\{∠AEM=∠NCM}\end{array}\right.$,
∴△AME≌△MNC,
∴AM=MN.
點評 本題考查正方形、全等三角形的判定,證明線段相等轉(zhuǎn)化為證明三角形全等是常用的方法,關(guān)鍵是學會輔助線的添加.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com