分析 (1)根據(jù)軸對(duì)稱的性質(zhì)寫出拋物線C1沿x軸翻折后的解析式,再根據(jù)頂點(diǎn)直接寫出拋物線C2的解析式即可;
(2)①首先設(shè)出點(diǎn)P坐標(biāo),求出點(diǎn)Q坐標(biāo),根據(jù)直角三角形,作輔助線構(gòu)造相似三角形,建立等量關(guān)系列方程求解即可;
②根據(jù)等腰梯形的底角相等,延長(zhǎng)QP與x軸相交與點(diǎn)H,構(gòu)造等于三角形,運(yùn)用三線合一與射影定理求出H的坐標(biāo),進(jìn)一步求出直線QP,聯(lián)立拋物線C1,可求出點(diǎn)P的坐標(biāo),進(jìn)一步寫出C3的解析式.
解答 解:如圖1:
(1)拋物線C1:y=-(x-1)2+4與x軸交于A、B兩點(diǎn),
令y=0,解得:x=-1,或x=3,
∴點(diǎn)A(-1,0),點(diǎn)B(3,0),
將拋物線C1沿x軸翻折后的解析式為:-y═-(x-1)2+4,整理為y═(x-1)2-4再作適當(dāng)平移得到拋物線C2的頂點(diǎn)為:(3,0),
可得:C2:y=(x-3)2,
聯(lián)立y=-(x-1)2+4和y=(x-3)2,解得:x=1,y=4,
∴Q(1,4),
∵y=-(x-1)2+4的點(diǎn)為(1,4),
所以Q點(diǎn)是拋物線C1的頂點(diǎn);
(2)①如圖2:
過(guò)點(diǎn)P,A作經(jīng)過(guò)點(diǎn)Q平行于x軸的直線,垂足是N,M,
∵∠OQP=90°,易證△AMQ∽△QNP,
∴$\frac{AM}{QN}=\frac{MQ}{NP}$,
由A(-1,0),Q(1,4)可知:AM=4,MQ=2,
設(shè)點(diǎn)P(m,-(m-1)2+4),
QN=m-1,NP=(m-1)2,
∴$\frac{4}{m-1}=\frac{2}{(m-1)^{2}}$,
解得:m=$\frac{3}{2}$,-(m-1)2+4=$\frac{15}{4}$,
∴P($\frac{3}{2}$,$\frac{15}{4}$),
所以:C3:y=$(x-\frac{3}{2})^{2}+\frac{15}{4}$,
②如圖3:
延長(zhǎng)QP交x軸于點(diǎn)H,過(guò)點(diǎn)H作HG⊥AQ,
由等腰梯形的性質(zhì)可知:∠QAH=∠AQH,
∴點(diǎn)G是AQ的中點(diǎn),
由A(-1,0),Q(1,4),可求G(0,2),
OA=1,OG=2,在Rt△AGH中,OG⊥AH,由射影定理得:OG2=OA×OH,
解得:OH=4,
∴點(diǎn)H(4,0),
設(shè)直線QP:y=px+q,代入點(diǎn)Q(1,4),H(4,0)得$\left\{\begin{array}{l}{0=4p+q}\\{4=p+q}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{p=-\frac{4}{3}}\\{q=\frac{16}{3}}\end{array}\right.$,
∴直線QP:y=$-\frac{4}{3}x+\frac{16}{3}$,
聯(lián)立y=$-\frac{4}{3}x+\frac{16}{3}$和y=-(x-1)2+4,
解得:x=$\frac{7}{3}$或x=1(舍去),
此時(shí)y=$\frac{20}{9}$,
∴點(diǎn)P($\frac{7}{3}$,$\frac{20}{9}$),
所以四邊形ADPQ為等腰梯形時(shí),拋物線C3的解析式為:y=$(x-\frac{7}{3})^{2}+\frac{20}{9}$.
點(diǎn)評(píng) 此題主要考查二次函數(shù)的綜合問(wèn)題,會(huì)求拋物線關(guān)于坐標(biāo)軸的對(duì)稱拋物線,并熟練運(yùn)用頂點(diǎn)式寫解析式,知道運(yùn)用直角構(gòu)造相似三角形,會(huì)設(shè)點(diǎn)的坐標(biāo)并表示線段,分析等量關(guān)系列方程是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | -2 | D. | -4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com