【題目】如圖,矩形ABOC的頂點A的坐標為(-4,5),DOB的中點,EOC上的一點,當△ADE的周長最小時,點E的坐標是( 。

A. B. C. D.

【答案】B

【解析】分析: A關(guān)于y軸的對稱點A′,連接A′Dy軸于E,則此時,ADE的周長最小,根據(jù)A的坐標為(-4,5),得到A′(4,5),B(-4,0),D(-2,0),求出直線DA′的解析式為y=x+,即可得到結(jié)論.

詳解: A關(guān)于y軸的對稱點A′,連接ADy軸于E

則此時,ADE的周長最小,

∵四邊形ABOC是矩形,

ACOB,AC=OB,

A的坐標為(4,5),

A′(4,5),B(4,0),

DOB的中點,

D(2,0),

設(shè)直線DA的解析式為y=kx+b,

,

∴直線DA的解析式為y=x+,

x=0,y=,

E(0,),

故選B.

點睛: 此題主要考查軸對稱最短路線問題,解決此類問題,一般都是運用軸對稱的性質(zhì),將求折線問題轉(zhuǎn)化為求線段問題,其說明最短的依據(jù)是三角形兩邊之和大于第三邊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:

1)請你根據(jù)圖中A、B兩點的位置,分別寫出它們所表示的有理數(shù)A  ,B  ;

2)觀察數(shù)軸,與點A的距離為4的點表示的數(shù)是:   ;

3)若將數(shù)軸折疊,使得A點與﹣3表示的點重合,則B點與數(shù)  表示的點重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙O的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P⊙A的切線,且點為B,則PB的最小值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y= (x<0)的圖象與直線y= x+m相交于點A和點B.過點AAEx軸于點E,過點BBFy軸于點F,P為線段AB上的一點,連接PE、PF.若PAEPBF的面積相等,且xP=﹣ ,xA﹣xB=﹣3,則k的值是( 。

A. ﹣5 B. C. ﹣2 D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(11分)如圖,四邊形ABCD為菱形,點E為對角線AC上的一個動點,連結(jié)DE并延長交AB于點F,連結(jié)BE.

(1)如圖,求證:AFD=EBC;

(2)如圖,若DE=EC且BEAF,求DAB的度數(shù);

(3)若DAB=90°且當BEF為等腰三角形時,求EFB的度數(shù)(只寫出條件與對應(yīng)的結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線的頂點為D(-1,3),與軸的交點A在點(-3,0)(-2,0)間,以下結(jié)論:①;②;③;④其中正確的有(.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.

請結(jié)合統(tǒng)計圖,回答下列問題:

1本次調(diào)查學(xué)生共 人, = ,并將條形圖補充完整;

2如果該校有學(xué)生2000人,請你估計該校選擇跑步這種活動的學(xué)生約有多少人?

3學(xué)校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是跑步跳繩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OA,OC分別在軸、軸上,點B在第一象限,點D在邊BC上,且AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點A′和A,B′和B分別對應(yīng)),若AB=1,反比例函數(shù)的圖象恰好經(jīng)過點 A′,B,則的值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF

查看答案和解析>>

同步練習(xí)冊答案