【題目】如圖△AOB和△ACD是等邊三角形,其中AB⊥x軸于E點.
(1)如圖,若OC=5,求BD的長度;
(2)設BD交x軸于點F,求證:∠OFA=∠DFA;
(3)如圖,若正△AOB的邊長為4,點C為x軸上一動點,以AC為邊在直線AC下方作正△ACD,連接ED,求ED的最小值.
【答案】(1)5;(2)見解析;(3)1.
【解析】試題分析:(1)先由等邊三角形的性質得出 進而得出 即可判斷出≌即可得出結論;
(2)借助(1)得出的≌,得出 進而求出 再判斷出, ≌即可求出
(3)如圖3中,連接DB并延長至點N,由≌(SAS),推出,推出則D點在直線BN上運動,過E作EH⊥DN于點H,當D點運動至H時,ED最小;
試題解析:(1)∵點C(5,0).
∴OC=5,
∵△AOB和△ACD是等邊三角形,
∴∠OAC=∠BAD,
在△AOC和△ABD中,
∴≌,
∴BD=OC=5;
(2)∵△AOB是等邊三角形,且AB⊥x軸于E點,
∴∠AOE=∠BOE=30,
由(1)知, ≌.
在△AOF和△BOF中,
∴≌.
根據(jù)平角的定義得,
∴∠OFA=∠DFA;
(3)如圖3中,連接并延長至點,
易證: ≌(SAS),
則D點在直線BN上運動
過E作于點H,當D點運動至H時,ED最小,
此時,
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)的圖象與坐標軸圍成的三角形,叫做此一次函數(shù)的坐標三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點A,B,則△OAB為此函數(shù)的坐標三角形.
(1)求函數(shù)y=x+3的坐標三角形的三條邊長;
(2)若函數(shù)y=x+b(b為常數(shù))的坐標三角形周長為16,求此三角形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀資料:小明是一個愛動腦筋的好學生,他在學習了有關圓的切線性質后,意猶未盡,又查閱到了與圓的切線相關的一個問題:
如圖1,已知PC是⊙O的切線,AB是⊙O的直徑,延長BA交切線PC與P,連接AC、BC、OC.
因為PC是⊙O的切線,AB是⊙O的直徑,所以∠OCP=∠ACB=90°,所以∠1=∠2.
又因為∠B=∠1,所以∠B=∠2.
在△PAC與△PCB中,又因為:∠P=∠P,所以△PAC∽△PCB,所以,即PC2=PAPB.
問題拓展:
(Ⅰ)如果PB不經(jīng)過⊙O的圓心O(如圖2)等式PC2=PAPB,還成立嗎?請證明你的結論;
綜合應用:
(Ⅱ)如圖3,⊙O是△ABC的外接圓,PC是⊙O的切線,C是切點,BA的延長線交PC于點P;
(1)當AB=PA,且PC=12時,求PA的值;
(2)D是BC的中點,PD交AC于點E.求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個圓錐的側面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交AC于M.
(1)若∠B=70°,則∠NMA的度數(shù)是 .
(2)連接MB,若AB=8cm,△MBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在點P,使由P,B,C構成的△PBC的周長值最小?若存在,標出點P的位置并求△PBC的周長最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC的BC邊上的一點,∠B =40°,∠ADC=80°.
(1)求證:AD=BD;
(2)若∠BAC=70°,判斷△ABC的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com