【題目】閱讀下列一段話,并解決后面的問(wèn)題 .觀察下面一例數(shù):

1,24,8……

我們發(fā)現(xiàn),這一列數(shù)從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于2 .

一般地,如果一列數(shù)從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于同一個(gè)常數(shù),這一列數(shù)就叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比 .

1)等比數(shù)列5,-1545,……的第4項(xiàng)是 ;

2)如果一列數(shù),,,……是等比數(shù)列,且公比為q,那么根據(jù)上述的規(guī)定,有

,,……

所以,

,

,

……

.(用q的代數(shù)式表示)

3)一個(gè)等比數(shù)列的第2項(xiàng)是10,第3項(xiàng)是20,求它的第1項(xiàng)與第4項(xiàng) .

【答案】1-135;(2;(3)第1項(xiàng)為5,第4項(xiàng)為40.

【解析】

1)根據(jù)題意可得等比數(shù)列:5,-15,45……中,公比為-3,即可得出第4項(xiàng)的值;

2)觀察數(shù)據(jù)可得;

3)根據(jù)第2項(xiàng)和第3項(xiàng)的值求出公比,即可求出第1項(xiàng)和第4項(xiàng)的值.

解:(145×-3=-135

2

3)∵,

,

故第1項(xiàng)為5,第4項(xiàng)為40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校決定在47日開(kāi)展世界無(wú)煙日宣傳活動(dòng),活動(dòng)有A.社區(qū)板報(bào)、B.集會(huì)演講、C.喇叭廣播、D.發(fā)宣傳畫(huà)四種宣傳方式.學(xué)校圍繞你最喜歡的宣傳方式是什么?在全校學(xué)生中進(jìn)行隨機(jī)抽樣調(diào)查(四個(gè)選項(xiàng)中必選且只選一項(xiàng)),根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如下兩種不完整的統(tǒng)計(jì)圖表:

請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問(wèn)題:

1)本次抽查的學(xué)生共______人,m=____________,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)若該校學(xué)生有1500人,請(qǐng)你估計(jì)該校喜歡集會(huì)演講這項(xiàng)宣傳方式的學(xué)生約有多少人?

3)學(xué)校采用抽簽方式讓每班在A、BC、D四種宣傳方式中隨機(jī)抽取兩種進(jìn)行展示,請(qǐng)用樹(shù)狀圖或列表法求某班所抽到的兩種方式恰好是集會(huì)演講喇叭廣播的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點(diǎn)E在AB上,過(guò)點(diǎn)E作EF⊥BC,點(diǎn)G在FE的延長(zhǎng)線上,且GA=GE.

(1)求證:AG與⊙O相切.

(2)若AC=6,AB=8,BE=3,求線段OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,點(diǎn)D為一等腰直角三角形紙片的斜邊AB的中點(diǎn),EBC邊上的一點(diǎn),將這張紙片沿DE翻折成如圖②,使BEAC邊相交于點(diǎn)F,若圖①中AB,則圖②中CEF的周長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一段防洪大堤,其橫斷面為梯形,斜坡的坡度,斜坡的坡度,大堤頂寬,為了增加抗洪能力,現(xiàn)將大堤加高,加高部分的橫斷面為梯形,,點(diǎn)、分別在,的延長(zhǎng)線上,當(dāng)新大堤頂寬時(shí),大堤加高________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為打造書(shū)香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書(shū)柜放置新購(gòu)進(jìn)的圖書(shū),調(diào)查發(fā)現(xiàn),若購(gòu)買(mǎi)甲種書(shū)柜3個(gè)、乙種書(shū)柜2個(gè),共需資金1020元;若購(gòu)買(mǎi)甲種書(shū)柜4個(gè),乙種書(shū)柜3個(gè),共需資金1440元.

(1)甲、乙兩種書(shū)柜每個(gè)的價(jià)格分別是多少元?

(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書(shū)柜共20個(gè),其中乙種書(shū)柜的數(shù)量不少于甲種書(shū)柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買(mǎi)方案供這個(gè)學(xué)校選擇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,菱形中,,中點(diǎn),,,于點(diǎn),交于點(diǎn)

求證:四邊形是矩形.

的度數(shù).

求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,AE,FC在一條直線上,AECF,過(guò)E,F分別作DE⊥AC,BF⊥AC,若ABCD,求證EG=FG.(提示:先證△ABF≌△CDE,得BF=DE,再證△BFG≌△DEG);若將△DEC的邊EC沿AC方向移動(dòng),變?yōu)閳D(2)時(shí),其余條件不變,上述結(jié)論是否成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)角a(0°<a<90°)得到△A1BC;A1BAC于點(diǎn)E,A1C1分別交AC、BCD、F兩點(diǎn).

(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過(guò)程中,線段BEBF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.

(2)如圖2,當(dāng)a=30°時(shí),試判斷四邊形BC1DA的形狀,并證明.

(3)在(2)的條件下,求線段DE的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案