【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,F(xiàn)H平分∠EFG.

(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).

【答案】
(1)

∵ DC∥FP,

∴∠2=∠C.

∵ ∠1=∠2,

∴∠1=∠C,

∴DC∥AB.


(2)

∵ DC∥FP,DC∥AB,

∴∠PFE=∠FED=28,∠PFG=∠AGF=80,

∴∠EFG=∠PFE+∠PFG=28+80=108,

∵ FH平分∠EFG,

∴∠EFH=∠EFG=54,

則∠PFH=∠EFH-∠PFE=54-28=26°.


【解析】(1)根據(jù)平行線的判定定理去判斷;
(2)要求∠PFH,則要求∠EFH和∠PFE,根據(jù)平行線的性質可分別求出∠EFH和∠PFE.
【考點精析】通過靈活運用角的平分線和平行線的判定,掌握從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若點Mm+3m2)在x軸上,則點M的坐標為( 。

A.0,﹣5B.0,5C.(﹣5,0D.5,0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B在一直線上,小明從點A出發(fā)沿AB方向勻速前進,4秒后走到點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)沿AB方向以同樣的速度勻速前進4秒后到點F,此時他(EF)的影長為2米,然后他再沿AB方向以同樣的速度勻速前進2秒后達點H,此時他(GH)處于燈光正下方.

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

(2)求小明沿AB方向勻速前進的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點DAB邊上的一點,

(1)試說明:∠EAC=∠B

(2)若AD=15,BD=36,求DE的長.

(3)若點DA、B之間移動,當點D為 時,ACDE互相平分.

(直接寫出答案,不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( ).

A.同位角相等B.三點可以確定一個圓

C.等腰三角形兩底角相等D.對角線相等且垂直的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程

(1)求證:對于任意實數(shù)m方程總有兩個不相等的實數(shù)根;

(2)若方程的一個根是1,求m的值及方程的另一個根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點在格點上.

1作出與△ABC關于x軸對稱的圖形△A1B1C1;

2)求出A1,B1,C1三點坐標;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點的坐標分別為A(2,1),B(﹣1,3),C(﹣3,2).

(1)作出ABC關于x軸對稱的A1B1C1;

(2)點A1的坐標      ,點B1的坐標      

(3)點P(a,a﹣2)與點Q關于x軸對稱,若PQ=8,則點P的坐標      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A.m2m3m6B.m23m5C.m3÷m2mD.3mm2

查看答案和解析>>

同步練習冊答案