【題目】已知:如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交于BE的延長線于點(diǎn)F,且AF=DC,連接CF.
(1)求證:D是BC的中點(diǎn);
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
【答案】
(1)證明:∵E是AD的中點(diǎn),
∴AE=DE.
∵AF∥BC,
∴∠FAE=∠BDE,∠AFE=∠DBE.
在△AFE和△DBE中,
,
∴△AFE≌△DBE(AAS).
∴AF=BD.
∵AF=DC,
∴BD=DC.
即:D是BC的中點(diǎn)
(2)解:四邊形ADCF是矩形;
證明:∵AF=DC,AF∥DC,
∴四邊形ADCF是平行四邊形.
∵AB=AC,BD=DC,
∴AD⊥BC即∠ADC=90°.
∴平行四邊形ADCF是矩形
【解析】(1)可證△AFE≌△DBE,得出AF=BD,進(jìn)而根據(jù)AF=DC,得出D是BC中點(diǎn)的結(jié)論;(證法2:可根據(jù)AF平行且相等于DC,得出四邊形ADCF是平行四邊形,從而證得DE是△BCF的中位線,由此得出D是BC中點(diǎn))(2)若AB=AC,則△ABC是等腰三角形,根據(jù)等腰三角形三線合一的性質(zhì)知AD⊥BC;而AF與DC平行且相等,故四邊形ADCF是平行四邊形,又AD⊥BC,則四邊形ADCF是矩形.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和平行四邊形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),且AD=DC,過A,B,D三點(diǎn)作⊙O,AE是⊙O的直徑,連結(jié)DE.
(1)求證:AC是⊙O的切線;
(2)若sinC= ,AC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某臺階的一部分,如果A點(diǎn)的坐標(biāo)為(0,0),B點(diǎn)的坐標(biāo)為(1,1),
(1)請建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出其余各點(diǎn)的坐標(biāo);
(2)如果臺階有10級,請你求出該臺階的長度和高度;
(3)若這10級臺階的寬度都是2m,單位長度為1m,現(xiàn)要將這些臺階鋪上地毯,需要多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,各地采用價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,某市規(guī)定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水量不超過6立方米時(shí),水費(fèi)按每立方米a元收費(fèi),超過6立方米時(shí),不超過的部分每立方米仍按a元收費(fèi),超過的部分每立方米按c元收費(fèi),該市某戶今年9、10月份的用水量和所交水費(fèi)如下表所示:
設(shè)某戶每月用水量x(立方米),應(yīng)交水費(fèi)y(元)
(1)a= ,c=
(2)當(dāng)x≤6,x≥6時(shí),分別求出y于x的函數(shù)關(guān)系式
(3)若該戶11月份用水量為8立方米,求該戶11 月份水費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,將兩個正方形(每個角都是)的一個頂點(diǎn)重合放置,若,求的度數(shù);
(2)如圖2,將三個正方形的一個頂點(diǎn)重合放置,若,求的度數(shù);
(3)如圖3,將三個正方形的一個頂點(diǎn)重合放置,若平分,那么平分嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市推出了電腦上網(wǎng)包月月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式如圖所示,其中OA是線段,AC是射線.
(1)當(dāng)x≥30時(shí),求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)時(shí)間為20小時(shí),他應(yīng)付多少元上網(wǎng)費(fèi)用;
(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在5月份的上網(wǎng)時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)P的橫坐標(biāo)是4,圖象交x軸于點(diǎn)A(m,0)和點(diǎn)B,且m>4,那么AB的長是( )
A.4+m
B.m
C.2m﹣8
D.8﹣2m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時(shí)針旋轉(zhuǎn)90°至DE,連接AE、CE,△ADE的面積為3,則BC的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中任意一點(diǎn)p(x,y)經(jīng)平移后對應(yīng)點(diǎn)為p1(x+5,y+3),將△ABC作同樣的平移得到△A1B1C1.
(1)畫出△A1B1C1;
(2)求A1,B1,C1的坐標(biāo);
(3)寫出平移的過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com