【題目】如圖1,在正方形ABCD中,點(diǎn)E、F分別是邊BC、AB上的點(diǎn),且CE=BF,連接DE,過點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請(qǐng)判斷:FG與CE的數(shù)量關(guān)系和位置關(guān)系;(不要求證明)
(2)如圖2,若點(diǎn)E、F分別是CB、BA延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)給出判斷并予以證明;
(3)如圖3,若點(diǎn)E、F分別是BC、AB延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫出你的判斷.
【答案】(1)FG = CE, FG ∥ CE;
(2)仍然成立,證明見解析;
(3)FG = CE , FG ∥ CE仍然成立. 。
【解析】試題分析:(1)結(jié)論:FG=CE,FG∥CE.如圖1中,設(shè)DE與CF交于點(diǎn)M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可.(2)結(jié)論仍然成立.如圖2中,設(shè)DE與CF交于點(diǎn)M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可.(3)結(jié)論仍然成立.如圖3中,設(shè)DE與FC的延長線交于點(diǎn)M,證明方法類似.
試題解析:(1)結(jié)論:FG=CE,FG∥CE.
理由:圖1中,設(shè)DE與CF交于點(diǎn)M.
∵四邊形ABCD是正方形,
∴BC=CD,∠ABC=∠DCE=90°,
在△CBF和△DCE中,
,
∴△CBF≌△DCE,
∴∠BCF=∠CDE,CF=DE,
∵∠BCF+∠DCM=90°,
∴∠CDE+∠DCM=90°,
∴∠CMD=90°,
∴CF⊥DE,
∵GE⊥DE,
∴EG∥CF,
∵EG=DE,CF=DE,
∴EG=CF,
∴四邊形EGFC是平行四邊形。
∴GF=EC,
∴GF=EC,GF∥EC.
(2)結(jié)論仍然成立。
理由:如圖2中,設(shè)DE與CF交于點(diǎn)M.
∵四邊形ABCD是正方形,
∴BC=CD,∠ABC=∠DCE=90,
在△CBF和△DCE中,
,
∴△CBF≌△DCE,
∴∠BCF=∠CDE,CF=DE,
∵∠BCF+∠DCM=90°,
∴∠CDE+∠DCM=90°,
∴∠CMD=90°,
∴CF⊥DE,
∵GE⊥DE,
∴EG∥CF,
∵EG=DE,CF=DE,
∴EG=CF,
∴四邊形EGFC是平行四邊形。
∴GF=EC,
∴GF=EC,GF∥EC.
(3)結(jié)論仍然成立。
理由:如圖3中,設(shè)DE與FC的延長線交于點(diǎn)M.
∵四邊形ABCD是正方形,
∴BC=CD,∠ABC=∠DCE=90,
∴∠CBF=∠DCE=90
在△CBF和△DCE中,
,
∴△CBF≌△DCE,
∴∠BCF=∠CDE,CF=DE
∵∠BCF+∠DCM=90°,
∴∠CDE+∠DCM=90°,
∴∠CMD=90°,
∴CF⊥DE,
∵GE⊥DE,
∴EG∥CF,
∵EG=DE,CF=DE,
∴EG=CF,
∴四邊形EGFC是平行四邊形。
∴GF=EC,
∴GF=EC,GF∥EC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=-2x2經(jīng)過平移后得到拋物線y=-2x2-4x-5,平移方法是( )
A. 向左平移1個(gè)單位,再向下平移3個(gè)單位
B. 向左平移1個(gè)單位,再向上平移3個(gè)單位
C. 向右平移1個(gè)單位,再向下平移3個(gè)單位
D. 向右平移1個(gè)單位,再向上平移3個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上):
①把△ABC沿BA方向平移,請(qǐng)?jiān)诰W(wǎng)格中畫出當(dāng)點(diǎn)A移動(dòng)到點(diǎn)A1時(shí)的△A1B1C1;
②把△A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°后得到△A2B2C2,如果網(wǎng)格中小正方形的邊長為1,求點(diǎn)B1旋轉(zhuǎn)到B2的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①4ac<b2;②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;③3a+c<0④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3⑤當(dāng)x<0時(shí),y隨x增大而增大其中結(jié)論正確的個(gè)數(shù)是( )
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列判斷:
①若|m|>0,則m>0;
②若m>n,則|m|>|n|;
③若|m|>|n|,則m>n;
④任意數(shù)m,則|m|是正數(shù);
⑤在數(shù)軸上,離原點(diǎn)越遠(yuǎn),該點(diǎn)對(duì)應(yīng)的數(shù)的絕對(duì)值越大,
其中正確的結(jié)論的個(gè)數(shù)為( 。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=4,點(diǎn)E是BC邊上一個(gè)動(dòng)點(diǎn),連接AE,作DF⊥AE于點(diǎn)F,當(dāng)BE的長為_____________________時(shí),△CDF是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,AE與BF相交于點(diǎn)O,連接EF
(1)求證:四邊形ABEF是菱形;
(2)若AE=6,BF=8,CE=,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于x的方程,一定是一元二次方程的是( 。
A. x2﹣2xy=0 B. (x+1)(x﹣1)=x2﹣2x
C. ax2+bx+c=0 D. (m2+1)x2﹣2x﹣3=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com