【題目】如圖,直線y=﹣x+4分別交x軸、y軸于A、C兩點(diǎn),拋物線y=﹣x2+mx+4經(jīng)過(guò)點(diǎn)A,且與x軸的另一個(gè)交點(diǎn)為點(diǎn)B.連接BC,過(guò)點(diǎn)C作CD∥x軸交拋物線于點(diǎn)D
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)E是拋物線上的點(diǎn),求滿足∠ECD=∠BCO的點(diǎn)E的坐標(biāo);
(3)點(diǎn)M在y軸上且位于點(diǎn)C上方,點(diǎn)N在直線AC上,點(diǎn)P為第一象限內(nèi)的拋物線上一點(diǎn),若以點(diǎn)C、M、N、P為頂點(diǎn)的四邊形是菱形,求菱形的邊長(zhǎng).
【答案】(1)y=﹣x2+3x+4;(2)E的坐標(biāo)為E或;(3)4﹣2或.
【解析】
(1)利用直線方程求得點(diǎn)A、C的坐標(biāo),根據(jù)點(diǎn)A、C坐標(biāo)求得拋物線解析式;
(2)分點(diǎn)E在CD上方、點(diǎn)E在CD下方兩種情況,分別求解即可;
(3)分CM為菱形的一條邊、CM為菱形的對(duì)角線兩種情況,分別求解即可.
解:(1)y=﹣x+4,令x=0,則y=4,令y=0,則x=4,
則點(diǎn)A、C的坐標(biāo)分別為(4,0)、(0,4),
將點(diǎn)A的坐標(biāo)代入拋物線的表達(dá)式并解得:m=3,
故拋物線的表達(dá)式為:y=﹣x2+3x+4①,
令y=0,則x=﹣1或4,故點(diǎn)B(﹣1,0);
(2)①當(dāng)點(diǎn)E在CD上方時(shí),
tan∠BCO=,
則直線CE的表達(dá)式為:y=x+4②,
聯(lián)立①②并解得:x=0或(舍去0),
則點(diǎn)E(,);
②當(dāng)點(diǎn)E在CD下方時(shí),
同理可得:點(diǎn)E′(,);
故點(diǎn)E的坐標(biāo)為E(,)或(,);
(3)①如圖2,當(dāng)CM為菱形的一條邊時(shí),
過(guò)點(diǎn)P作PQ∥x軸,∵OA=OC=4,
∴∠PMQ=∠CAO=45°,
設(shè)點(diǎn)P(x,﹣x2+3x+4),
則PM=PQ=x,
C、M、N、P為頂點(diǎn)的四邊形是菱形,則PM=PN,
即:x=﹣x2+3x+4,解得:x=0或4﹣(舍去0),
故菱形邊長(zhǎng)為x=4﹣2;
②如圖3,當(dāng)CM為菱形的對(duì)角線時(shí),
同理可得:菱形邊長(zhǎng)為2;
故:菱形邊長(zhǎng)為4﹣2或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+2經(jīng)過(guò)A(﹣1,0),B(2,0),C三點(diǎn).直線y=mx+交拋物線于A,Q兩點(diǎn),點(diǎn)P是拋物線上直線AQ上方的一個(gè)動(dòng)點(diǎn),作PF⊥x軸,垂足為F,交AQ于點(diǎn)N.
(1)求拋物線的解析式;
(2)如圖①,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),線段PN=2NF,求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖②,線段AC的垂直平分線交x軸于點(diǎn)E,垂足為D,點(diǎn)M為拋物線的頂點(diǎn),在直線DE上是否存在一點(diǎn)G,使△CMG的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象與邊長(zhǎng)是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點(diǎn),△OMN的面積為10.若動(dòng)點(diǎn)P在x軸上,則PM+PN的最小值是( )
A. 6 B. 10 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AC是直徑,點(diǎn)D是AC延長(zhǎng)線上一點(diǎn),且∠DBC=∠BAC,.
(1)求證:BD是⊙O的切線;(2)求的值;(3)如圖,直徑AC=5,,求△ABF面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某種蘋果到了收獲季節(jié),投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蘋果的銷售不會(huì)虧本,且該產(chǎn)品的日銷售量y(千克)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系關(guān)于銷售單價(jià)、日銷售量、日銷售利潤(rùn)的幾組對(duì)應(yīng)值如表:
銷售單價(jià)x(元) | 10 | 15 | 23 | 28 |
日銷售量y(千克) | 200 | 150 | 70 | m |
日銷售利潤(rùn)w(元) | 400 | 1050 | 1050 | 400 |
(注:日銷售利潤(rùn)=日銷售量×(銷售單價(jià)﹣成本單價(jià)))
(1)求y關(guān)于x的函數(shù)解析式(要寫出x的取值范圍)及m的值;
(2)根據(jù)以上信息,填空:產(chǎn)品的成本單價(jià)是 元,當(dāng)銷售單價(jià)x= 元時(shí),日銷售利潤(rùn)w最大,最大值是 元;
(3)某農(nóng)戶今年共采摘蘋果4800千克,該品種蘋果的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷售,能否銷售完這批蘋果?請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了科學(xué)建設(shè)“學(xué)生健康成長(zhǎng)工程”.隨機(jī)抽取了部分學(xué)生家庭對(duì)其家長(zhǎng)進(jìn)行了主題為“周末孩子在家您關(guān)心嗎?”的問(wèn)卷調(diào)查,將回收的問(wèn)卷進(jìn)行分析整理,得到了如下的樣本統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:
代號(hào) | 情況分類 | 家庭數(shù) |
帶孩子玩并且關(guān)心其作業(yè)完成情況 | 16 | |
只關(guān)心其作業(yè)完成情況 | b | |
只帶孩子玩 | 8 | |
既不帶孩子玩也不關(guān)心其作業(yè)完成情況 | d |
(1)求的值;
(2)該校學(xué)生家庭總數(shù)為500,學(xué)校決定按比例在類家庭中抽取家長(zhǎng)組成培訓(xùn)班,其比例為類取20%,類各取60%,請(qǐng)你估計(jì)該培訓(xùn)班的家庭數(shù);
(3)若在類家庭中只有一個(gè)城鎮(zhèn)家庭,其余是農(nóng)村家庭,請(qǐng)用列舉法求出在類中隨機(jī)抽出2個(gè)家庭進(jìn)行深度采訪,其中有一個(gè)是城鎮(zhèn)家庭的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=6,BC=12,點(diǎn)E在邊BC上,且BE=2CE,將矩形沿過(guò)點(diǎn)E的直線折疊,點(diǎn)C,D的對(duì)應(yīng)點(diǎn)分別為C′,D′,折痕與邊AD交于點(diǎn)F,當(dāng)點(diǎn)B,C′,D′恰好在同一直線上時(shí),AF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下六個(gè)命題,①同旁內(nèi)角互補(bǔ);②若x2=4,則x=2;③;④平分弦的直徑垂直于弦;⑤等弧所對(duì)的圓心角相等;⑥相等的圓心角所對(duì)的弧相等.從這六個(gè)命題中隨機(jī)任意抽取一個(gè)命題是真命題的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. “買一張電影票,座位號(hào)為偶數(shù)”是必然事件
B. 若甲、乙兩組數(shù)據(jù)的方差分別為S甲2=0.3,S乙2=0.1,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定
C. 一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5
D. 一組數(shù)據(jù)2,4,5,5,3,6的平均數(shù)是5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com