【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2),
(1)寫出點(diǎn)A、B的坐標(biāo):A(_____,_____)、B(_____,_____);
(2)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△A′B′C′,寫出A′、B′、C′三點(diǎn)坐標(biāo);
(3)求△ABC的面積。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1 , 它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,它交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3 , 交x軸于A3;…如此進(jìn)行下去,直至得到C7 , 若點(diǎn)P(13,m)在第7段拋物線C7上,則m= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能完全地寫出來,于是小明用﹣1來表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,用這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答下列問題:
(1)求出+2的整數(shù)部分和小數(shù)部分;
(2)已知:10+=x+y,其中x是整數(shù),且0<y<1,請你求出(x﹣y)的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,對角線交于點(diǎn),,點(diǎn)分別是的中點(diǎn),交于點(diǎn).有下列4個(gè)結(jié)論:①;②;③;④,其中說法正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,多邊形OABCDE的頂點(diǎn)坐標(biāo)分別是O(0,0)、A(0,6)、B(4,6)、C(4,4)、D(6,4),E(6,0),若直線L經(jīng)過點(diǎn)M(2,3),且將多邊形OABCDE分割成面積相等的兩部分,則直線L的函數(shù)表達(dá)式是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃岡市三運(yùn)會(huì)期間,武穴黃商有一種姚明牌運(yùn)動(dòng)裝每件的銷售價(jià)y(元)與時(shí)間x(周)之間的函數(shù)關(guān)系式對應(yīng)的點(diǎn)都在如圖所示的圖象上,該圖象從左至右,依次是線段AB、線段BC、線段CD,而這種運(yùn)動(dòng)裝每件的進(jìn)價(jià)Z(元)與時(shí)間x(周)之間的函數(shù)關(guān)系式為Z= (1≤x≤16且x為整數(shù))
(1)寫出每件的銷售價(jià)y(元)與時(shí)間x(周)之間的函數(shù)關(guān)系式;
(2)設(shè)每件運(yùn)動(dòng)裝銷售利潤為w,寫出w(元)與時(shí)間x(周)之間的函數(shù)關(guān)系式;
(3)求該運(yùn)動(dòng)裝第幾周出銷時(shí),每件運(yùn)動(dòng)裝的銷售利潤最大?最大利潤為多少?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD//AB,BD平分∠ABC,CE平分∠DCF,∠ACE=90°
(1)請問BD和CE是否平行?請你說明理由;
(2)AC和BD有何位置關(guān)系?請你說明判斷的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線相交于A(2,1)、B兩點(diǎn).
(1)求m及k的值;
(2)不解關(guān)于x、y的方程組直接寫出點(diǎn)B的坐標(biāo);
(3)直線經(jīng)過點(diǎn)B嗎?請說明理由.
【答案】(1)m=-1,k=2;(2)(-1,-2);(3)經(jīng)過
【解析】試題分析:(1)把A(2,1)分別代入直線與雙曲線即可求得結(jié)果;
(2)根據(jù)函數(shù)圖象的特征寫出兩個(gè)圖象的交點(diǎn)坐標(biāo)即可;
(3)把x=-1,m=-1代入即可求得y的值,從而作出判斷.
(1)把A(2,1)分別代入直線與雙曲線的解析式得m=-1,k=2;
(2)由題意得B的坐標(biāo)(-1,-2);
(3)當(dāng)x=-1,m=-1代入得y=-2×(-1)+4×(-1)=2-4=-2
所以直線經(jīng)過點(diǎn)B(-1,-2).
考點(diǎn):反比例函數(shù)的性質(zhì)
點(diǎn)評:反比例函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),是中考常見題,一般難度不大,需熟練掌握.
【題型】解答題
【結(jié)束】
20
【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣球,當(dāng)溫度不變時(shí),氣球內(nèi)氣球的壓力p(千帕)是氣球的體積V(米2)的反比例函數(shù),其圖象如圖所示(千帕是一種壓強(qiáng)單位)
(1)寫出這個(gè)函數(shù)的解析式;
(2)當(dāng)氣球的體積為0.8立方米時(shí),氣球內(nèi)的氣壓是多少千帕;
(3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈ǎ瑸榱税踩鹨,氣球的體積應(yīng)不小于多少立方米。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給定關(guān)于 的二次函數(shù) ,
學(xué)生甲:當(dāng) 時(shí),拋物線與 軸只有一個(gè)交點(diǎn),因此當(dāng)拋物線與 軸只有一個(gè)交點(diǎn)時(shí), 的值為3;
學(xué)生乙:如果拋物線在 軸上方,那么該拋物線的最低點(diǎn)一定在第二象限;
請判斷學(xué)生甲、乙的觀點(diǎn)是否正確,并說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com