【題目】我國(guó)三國(guó)時(shí)期數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖1所示.在圖2中,若正方形ABCD的邊長(zhǎng)為14,正方形IJKL的邊長(zhǎng)為2,且IJ//AB,則正方形EFGH的邊長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】標(biāo)準(zhǔn)的籃球場(chǎng)長(zhǎng)28m,寬15m.在某場(chǎng)籃球比賽中,紅隊(duì)甲、乙兩名運(yùn)動(dòng)員分別在A,B處,位置如圖①所示,已知點(diǎn)B到中線EF的距離為6m,點(diǎn)C到中線EF的距離為8m,運(yùn)動(dòng)員甲在A處搶到籃球后,迅速將球拋向C處,球的平均運(yùn)行速度是m/s,運(yùn)動(dòng)員乙在B處看到后同時(shí)快跑到C處并恰好接住了球(點(diǎn)A,B,C在同一直線上).圖②中l1,l2分別表示球、運(yùn)動(dòng)員乙離A處的距離y(m)與從A處拋球后的時(shí)間x(s)的關(guān)系圖象.
(1)直接寫出a,b,c的值;
(2)求運(yùn)動(dòng)員乙由B處跑向C處的過程中y(m)與x(s)的函數(shù)解析式l2;
(3)運(yùn)動(dòng)員要接住球,一般在球距離自己還有2m遠(yuǎn)時(shí)要做接球準(zhǔn)備,求運(yùn)動(dòng)員乙準(zhǔn)備接此球的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三點(diǎn)在一條直線上,OE,OF分別平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度數(shù).將下列解題過程補(bǔ)充完整.
解:因?yàn),?/span>AOC:∠COD:∠BOD=2:3:4,
所以∠AOC= ,∠COD= ,∠BOD= ,
因?yàn)?/span>OE,OF分別平分∠AOC和∠BOD,
所以∠AOE= ,∠BOF= ,
所以∠EOF= ,
又因?yàn)?/span> ,所以∠GOF=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】柯橋區(qū)某企業(yè)因?yàn)榘l(fā)展需要,從外地調(diào)運(yùn)來一批94噸的原材料,現(xiàn)有甲、乙、丙三種車型共選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運(yùn)載量(噸/輛) | 5 | 8 | 10 |
汽車運(yùn)費(fèi)(元/輛) | 400 | 500 | 600 |
(1)若全部物資都用甲、乙兩種車型來運(yùn)送,需運(yùn)費(fèi)6400元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)省運(yùn)費(fèi),該地政府打算用甲、乙、丙三種車型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能分別求出三種車型的輛數(shù)嗎?此時(shí)的運(yùn)費(fèi)又是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一條道路上,甲車從A地到B地,乙車從B地到A地,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的函數(shù)關(guān)系的圖象.下列說法錯(cuò)誤的是( )
A.乙先出發(fā)的時(shí)間為0.5小時(shí)
B.甲的速度是80千米/小時(shí)
C.甲出發(fā)0.5小時(shí)后兩車相遇
D.甲到B地比乙到A地早 小時(shí)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線可變形為:,則點(diǎn)P()到直線的距離d可用公式計(jì)算.
例如:求點(diǎn)P(-2,1)到直線的距離.
解:因?yàn)橹本可變形為,其中,.
所以點(diǎn)P(-2,1)到直線的距離為.
根據(jù)以上材料求:
(1)點(diǎn)P(2,-1)到直線的距離;
(2)已知M為直線上的點(diǎn),且M到直線的距離為,求M的坐標(biāo);
(3)已知線段上的點(diǎn)到直線的最小距離為1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè) =n.
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示 的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線y=(k>0與矩形兩邊AB、BC分 別交于點(diǎn)D、E,且BD=2AD﹒
(1)求此雙曲線的函數(shù)表達(dá)式及點(diǎn)E的坐標(biāo);
(2)若矩形OABC的對(duì)角線OB與雙曲線相交于點(diǎn)P,連結(jié)PC,求△POC的面積﹒
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com