【題目】如圖 1,一張△ABC 紙片,點 M、N 分別是 AC、BC 上兩點.
(1)若沿直線 MN 折疊,使 C 點落在 BN 上,則∠AMC′與∠ACB 的數(shù)量關系是 ;
(2)若折成圖 2 的形狀.猜想∠AMC′、∠BNC′和∠ACB 的數(shù)量關系,并說明理由.
猜想: .
理由:
(3)若折成圖3 的形狀,猜想∠AMC′、∠BNC′和∠ACB 的數(shù)量關系是 .(寫出結論即可).
(4)將上述問題推廣,如圖4,將四邊形 ABCD 紙片沿 MN 折疊,使點 C、D 落在四邊形 ABNM 的內部時,∠AMD′+∠BNC′與∠C、∠D 之間的數(shù)量關系 是 (寫出結論即可).
【答案】(1)∠AMC′=2∠ACB;(2)∠AMC′+∠BNC′=2∠ACB,理由見詳解;(3)∠AMC′-∠BNC′=2∠ACB;(4)∠AMD′+∠BNC′=2(∠C+∠D)-360°.
【解析】
(1)根據(jù)折疊性質和三角形的外角定理得出結論;
(2)先根據(jù)折疊得:∠CMN=∠C′MN,∠CNM=∠C′NM,由兩個平角∠CMA和∠CNB得:∠AMC′+∠′BNC′等于360°與四個折疊角的差,化簡為結果;
(3)利用兩次外角定理得∠AMC′=∠C′+∠C+∠BNC′,然后根據(jù)等量代換,得出結論;
(4)與(2)類似,先由折疊得:∠DMN=∠D′MN,∠CNM=∠C′NM,再由兩平角的和為360°得:∠AMD′+∠BNC′=360°-2∠DMN-2∠CNM,根據(jù)四邊形的內角和得:∠DMN+∠CNM=360°-∠C-∠D,代入前式可得結論.
解:(1)由折疊得:∠ACB=∠MC′C,
∵∠AMC′=∠ACB+∠MC′C,
∴∠AMC′=2∠ACB;
故答案為:∠AMC′=2∠ACB;
(2)猜想:∠AMC′+∠BNC′=2∠ACB,
理由是:
由折疊得:∠CMN=∠C′MN,∠CNM=∠C′NM,
∵∠CMA+∠CNB=360°,
∴∠AMC′+∠′BNC′=360°-∠CMN-∠C′MN-∠CNM-∠C′NM=360°-2∠CMN-2∠CNM,
∴∠AMC′+∠BNC′=2(180°-∠CMN-∠CNM)=2∠ACB;
(3)∵∠AMC′=∠MDC+∠C,∠MDC=∠C′+∠BNC′,
∴∠AMC′=∠C′+∠BNC′+∠C,
∵∠C=∠C′,
∴∠AMC′=2∠C+∠BNC′,
∴∠AMC′-∠BNC′=2∠ACB;
故答案為:∠AMC′-∠BNC′=2∠ACB;
(4)由折疊得:∠DMN=∠D′MN,∠CNM=∠C′NM,
∵∠DMA+∠CNB=360°,
∴∠AMD′+∠BNC′=360°-2∠DMN-2∠CNM,
∵∠DMN+∠CNM=360°-∠C-∠D,
∴∠AMD′+∠BNC′=360°-2(360°-∠C-∠D)=2(∠C+∠D)-360°,
故答案為:∠AMD′+∠BNC′=2(∠C+∠D)-360°.
科目:初中數(shù)學 來源: 題型:
【題目】珍珍與環(huán)環(huán)兩人一起做游戲,游戲規(guī)則如下:每人從1,2,3,4,5,6,7,8中任意選擇一個數(shù)字,然后兩人各轉動一次如圖所示的轉盤(轉盤被分為面積相等的四個扇形),兩人轉出的數(shù)字之和等于誰事先選擇的數(shù),誰就獲勝;若兩人轉出的數(shù)字之和不等于她們各自選擇的數(shù),就再做一次上述游戲,直到?jīng)Q出勝負.若環(huán)環(huán)事先選擇的數(shù)是5,用列表法或畫樹狀圖的方法,求她獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點 O 按如圖方式疊放在一起.
( 1 ) 如圖 1 , 若∠ BOD=35° , 則∠ AOC= ; 若∠AOC=135°, 則∠BOD= ;
(2)如圖2,若∠AOC=140°,則∠BOD= ;
(3)猜想∠AOC 與∠BOD 的大小關系,并結合圖1說明理由.
(4)三角尺 AOB 不動,將三角尺 COD 的 OD 邊與 OA 邊重合,然后繞點 O 按順時針或逆時針方向任意轉動一個角度,當∠A OD(0°<∠AOD<90°)等于多少度時,這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD 角度所有可能的值,不用說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】推理填空:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4( )
∴∠2=∠4 (等量代換)
∴CE∥BF ( )
∴∠ =∠3( )
又∵∠B=∠C(已知),∴∠3=∠B(等量代換)
∴AB∥CD ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 ABCD 中,AE、BF 分別平分∠DAB 和∠ABC,交 CD 于點 E、F,AE、BF 相交于點 M.
(1)求證:AE⊥BF;
(2)判斷線段 DF 與 CE 的大小關系,并予以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB,垂足為D.下列說法不正確的是( 。
A.與∠1互余的角只有∠2B.∠A與∠B互余
C.∠1=∠BD.若∠A=2∠1,則∠B=30°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com