16.如圖,所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,在所給平面直角坐標(biāo)系中解答下列問(wèn)題:
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1
(2)作出將△ABC繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°后所得的△A2B2C2;
(3)寫(xiě)出點(diǎn)B1、B2的坐標(biāo).

分析 (1)根據(jù)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征寫(xiě)出點(diǎn)A1、B1、C1,然后描點(diǎn)即可得到△A1B1C1;
(2)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫(huà)出點(diǎn)A2、B2、C2,然后描點(diǎn)即可得到△A2B2C2
(3)利用畫(huà)圖寫(xiě)出點(diǎn)B1、B2的坐標(biāo).

解答 解:(1)如圖,△A1B1C1為所作;
(2)如圖,△A2B2C2為所作;
(3)點(diǎn)B1、B2的坐標(biāo)分別為(-2,2),(2,-2).

點(diǎn)評(píng) 本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對(duì)應(yīng)角都相等都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段也相等,由此可以通過(guò)作相等的角,在角的邊上截取相等的線段的方法,找到對(duì)應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形.也考查了軸對(duì)稱(chēng)變換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(3x2y-2xy2)-(xy2-2x2y)-(3x2y2+3x2y)-(-3x2y2-3xy2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB,AC于點(diǎn)M和N,再分別以M,N為圓心,大于$\frac{1}{2}$MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是( 。
①AD平分∠BAC;
②作圖依據(jù)是SAS;
③∠ADC=60°;  
④點(diǎn)D在AB的垂直平分線上.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.△ABC 中,∠C=90°,點(diǎn)O為AB上一點(diǎn),以O(shè)為圓心的半圓切AC于E,交AB于D,AC=12,BC=9,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.解方程
(1)x+3x=-12
(2)2x+5=5x-7
(3)3(x-2)=2-5(x-2)
(4)$\frac{y+2}{4}$-$\frac{2y-3}{6}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知:一個(gè)正數(shù)的兩個(gè)平方根為2a-1和a+4,求a和這個(gè)正數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖△ABC中,D、E是AB、AC上點(diǎn),AB=7.8,AD=3,AC=6,AE=3.9,試判斷△ADE與△ABC是否會(huì)相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.關(guān)于x的方程kx2+(k+1)x+$\frac{k}{4}$=0有實(shí)數(shù)根.
(1)求k的取值范圍;
(2)是否存在實(shí)數(shù)k,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.解方程或計(jì)算:
(1)解方程:$\frac{3}{1-2x}$-$\frac{1}{2(2x-1)}$=1              
(2)計(jì)算:($\frac{1}{2}$)-2-(π-$\sqrt{7}$)0+|$\sqrt{3}$-2|+4sin60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案