【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1和3;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、0和﹣3.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)A的坐標(biāo)為(x,y).
(1)請用表格或樹狀圖列出點(diǎn)A所有可能的坐標(biāo);
(2)求點(diǎn)A在反比例函數(shù)y=圖象上的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙人5場10次投籃命中次數(shù)如圖
(1)填寫表格.
平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | ______ | 8 | 8 | ______ |
乙 | 8 | ______ | ______ | 3.2 |
(2)①教練根據(jù)這5個(gè)成績,選擇甲參加投籃比賽,理由是什么?
②如果乙再投籃1場,命中8次,那么乙的投監(jiān)成績的方差將會怎樣變化?(“變大”“變小”或”不變”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于,對稱軸為直線,頂點(diǎn)為.
(1)求該二次函數(shù)的解析式;
(2)經(jīng)過、兩點(diǎn)的直線交拋物線的對稱軸于點(diǎn),點(diǎn)為直線上方拋物線上的一動(dòng)點(diǎn),當(dāng)點(diǎn)在什么位置時(shí),的面積最大?并求此時(shí)點(diǎn)的坐標(biāo)及的最大面積;
(3)如圖,平移拋物線,使拋物線的頂點(diǎn)在射線上移動(dòng),點(diǎn)平移后的對應(yīng)點(diǎn)為,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn),連接、,是否能為等腰三角形?若能,請求出所有符合條件的點(diǎn)的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系中,直線 與軸交于點(diǎn)A,與軸交于點(diǎn)B,拋物線經(jīng)過A、B兩點(diǎn),與軸的另一個(gè)交點(diǎn)為C.
(1)直接寫出點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)D為直線AB下方拋物線上一動(dòng)點(diǎn);
①連接DO交AB于點(diǎn)E,若DE:OE=3:4,求點(diǎn)D的坐標(biāo);
②是否存在點(diǎn)D,使得∠DBA的度數(shù)恰好是∠BAC度數(shù)2倍,如果存在,求點(diǎn)D 的坐標(biāo),如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,、分別為、的中點(diǎn),連接、,和交于點(diǎn).
(1)如圖1,求證:;
(2)如圖2,作關(guān)于對稱的圖形,連接,在不添加任何輔助線的情況下,請直接寫出圖2中四個(gè)三角形,使寫出的每個(gè)三角形的面積都等于正方形面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的頂點(diǎn)A的坐標(biāo)為(5,0),頂點(diǎn)B、C都在第一象限,對角線AC、BO交于點(diǎn)D,雙曲線y=(x>0)經(jīng)過點(diǎn)D,且ACBO40,則k的值為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AEF中,∠EAF=45°,AG⊥EF于點(diǎn)G,現(xiàn)將△AEG沿AE折疊得到△AEB,將△AFG沿AF折疊得到△AFD,延長BE和DF相交于點(diǎn)C.
(1)試判斷四邊形ABCD的形狀,并給出證明;
(2)連接BD分別交AE、AF于點(diǎn)M、N,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADH,試判斷線段MN、ND、DH之間的數(shù)量關(guān)系,并說明理由.
(3)若EG=2,GF=3,BM=2,求AG、MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知拋物線經(jīng)過點(diǎn),與軸交于點(diǎn),,拋物線的頂點(diǎn)為點(diǎn),對稱軸與軸交于點(diǎn).
(1)求拋物線的表達(dá)式及點(diǎn)的坐標(biāo);
(2)點(diǎn)是軸正半軸上的一點(diǎn),如果,求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,點(diǎn)是位于軸左側(cè)拋物線上的一點(diǎn),如果是以為直角邊的直角三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測得頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°,則該電線桿PQ的高度( )
A. 6+2 B. 6+ C. 10﹣ D. 8+
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com