(2007·泰州)如圖所示,已知:E(-4,2),F(xiàn)(-1,-1),以O(shè)為位似中心,按比例尺1∶2,把△EFO縮小,則點E的對應(yīng)的坐標(biāo)為

[  ]

A.(2,-1)或(-2,1)

B.(8-4)或(-8,4)

C.(2,-1)

D.(8,-4)

答案:A
解析:

按比例尺12,把△EFO縮小,即位似比是12,若在OE方向上縮小,則E的對應(yīng)點為(2,1),若在EO方向上縮小,則E點的對應(yīng)點為(2,1),因此E點對應(yīng)點為(2,1)(2,1)


提示:

本題主要考查位似變換中對應(yīng)點的坐標(biāo)的變化規(guī)律.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•泰州)如圖①,Rt△ABC中,∠B=90°,∠CAB=30度.它的頂點A的坐標(biāo)為(10,0),頂點B的坐標(biāo)為,AB=10,點P從點A出發(fā),沿A→B→C的方向勻速運動,同時點Q從點D(0,2)出發(fā),沿y軸正方向以相同速度運動,當(dāng)點P到達點C時,兩點同時停止運動,設(shè)運動的時間為t秒.
(1)求∠BAO的度數(shù).
(2)當(dāng)點P在AB上運動時,△OPQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖②),求點P的運動速度.
(3)求(2)中面積S與時間t之間的函數(shù)關(guān)系式及面積S取最大值時點P的坐標(biāo).
(4)如果點P,Q保持(2)中的速度不變,那么點P沿AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減小,當(dāng)點P沿這兩邊運動時,使∠OPQ=90°的點P有幾個?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)模擬試卷冀教版(解析版) 題型:解答題

(2007•泰州)如圖①,Rt△ABC中,∠B=90°,∠CAB=30度.它的頂點A的坐標(biāo)為(10,0),頂點B的坐標(biāo)為,AB=10,點P從點A出發(fā),沿A→B→C的方向勻速運動,同時點Q從點D(0,2)出發(fā),沿y軸正方向以相同速度運動,當(dāng)點P到達點C時,兩點同時停止運動,設(shè)運動的時間為t秒.
(1)求∠BAO的度數(shù).
(2)當(dāng)點P在AB上運動時,△OPQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖②),求點P的運動速度.
(3)求(2)中面積S與時間t之間的函數(shù)關(guān)系式及面積S取最大值時點P的坐標(biāo).
(4)如果點P,Q保持(2)中的速度不變,那么點P沿AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減小,當(dāng)點P沿這兩邊運動時,使∠OPQ=90°的點P有幾個?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省溫州市永嘉縣二模試卷(解析版) 題型:解答題

(2007•泰州)如圖①,Rt△ABC中,∠B=90°,∠CAB=30度.它的頂點A的坐標(biāo)為(10,0),頂點B的坐標(biāo)為,AB=10,點P從點A出發(fā),沿A→B→C的方向勻速運動,同時點Q從點D(0,2)出發(fā),沿y軸正方向以相同速度運動,當(dāng)點P到達點C時,兩點同時停止運動,設(shè)運動的時間為t秒.
(1)求∠BAO的度數(shù).
(2)當(dāng)點P在AB上運動時,△OPQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖②),求點P的運動速度.
(3)求(2)中面積S與時間t之間的函數(shù)關(guān)系式及面積S取最大值時點P的坐標(biāo).
(4)如果點P,Q保持(2)中的速度不變,那么點P沿AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減小,當(dāng)點P沿這兩邊運動時,使∠OPQ=90°的點P有幾個?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•泰州)如圖①,Rt△ABC中,∠B=90°,∠CAB=30度.它的頂點A的坐標(biāo)為(10,0),頂點B的坐標(biāo)為,AB=10,點P從點A出發(fā),沿A→B→C的方向勻速運動,同時點Q從點D(0,2)出發(fā),沿y軸正方向以相同速度運動,當(dāng)點P到達點C時,兩點同時停止運動,設(shè)運動的時間為t秒.
(1)求∠BAO的度數(shù).
(2)當(dāng)點P在AB上運動時,△OPQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖②),求點P的運動速度.
(3)求(2)中面積S與時間t之間的函數(shù)關(guān)系式及面積S取最大值時點P的坐標(biāo).
(4)如果點P,Q保持(2)中的速度不變,那么點P沿AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減小,當(dāng)點P沿這兩邊運動時,使∠OPQ=90°的點P有幾個?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•泰州)如圖,在2×2的正方形格紙中,有一個以格點為頂點的△ABC,請你找出格紙中所有與△ABC成軸對稱且也以格點為頂點的三角形,這樣的三角形共有    個.

查看答案和解析>>

同步練習(xí)冊答案