11.如圖,AB是⊙O直徑,D為⊙O上一點(diǎn),AT平分∠BAD交⊙O于點(diǎn)T,過T作AD的垂線交AD的延長線于點(diǎn)C.
(1)求證:CT為⊙O的切線;
(2)連接BT,若⊙O半徑為1,AT=$\sqrt{3}$,求BT的長.

分析 (1)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個(gè)銳角互余,證得CT⊥OT,CT為⊙O的切線;
(2)連接BT,由圓周角定理得出∠ATB=90°,再由勾股定理求出BT即可.

解答 (1)證明:連接OT,如圖1所示:
∵OA=OT,
∴∠OAT=∠OTA,
又∵AT平分∠BAD,
∴∠DAT=∠OAT,
∴∠DAT=∠OTA,
∴OT∥AC,
又∵CT⊥AC,
∴CT⊥OT,
∴CT為⊙O的切線;
(2)解:連接BT,如圖2所示:
∵AB是⊙O直徑,
∴AB=2,∠ATB=90°,
∴BT=$\sqrt{A{B}^{2}-A{T}^{2}}$=$\sqrt{{2}^{2}-(\sqrt{3})^{2}}$=1.

點(diǎn)評 本題主要考查了切線的判定、等腰三角形的性質(zhì)、平行線的判定、圓周角定理、勾股定理;熟練掌握切線的判定和圓周角定理是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.已知多項(xiàng)式(mx2-6x2+3x)+(1-x+3mx2)-2x
(1)若m=2,化簡此多項(xiàng)式;
(2)若多項(xiàng)式的值與x的值無關(guān),求4m2-6m+2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.一座隧道的截面由拋物線和長方形組成,長方形的長為8m,寬為2m,隧道的最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系.
(1)求拋物線的解析式.
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車是否可以順利通過,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)y=-$\frac{1}{2}{x^2}$+bx+c的圖象經(jīng)過點(diǎn)A(-3,-6),并與x軸交于點(diǎn)B(-1,0)和點(diǎn)C,頂點(diǎn)為P.
(1)求二次函數(shù)的解析式及頂點(diǎn)P的坐標(biāo);     
(2)設(shè)點(diǎn)D為線段OC上一點(diǎn),且∠DPC=∠BAC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知AO=DO,∠OBC=∠OCB.求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,反比例函數(shù)y=$\frac{k}{x}$(k≠0,x>0)的圖象與直線y=3x相交于點(diǎn)C,過直線上點(diǎn)A(1,3)作AB⊥X軸于點(diǎn)B,交反比例函數(shù)圖象于點(diǎn)D,且AB=3BD
(1)求K的值;
(2)求C點(diǎn)的坐標(biāo);
(3)在y軸上確定一點(diǎn)P,使點(diǎn)P到C、D兩點(diǎn)距離之和d=PC+PD最小,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.探究函數(shù)y=x+$\frac{4}{x}$的圖象與性質(zhì)
(1)函數(shù)y=x+$\frac{4}{x}$的自變量x的取值范圍是x≠0;
(2)下列四個(gè)函數(shù)圖象中,函數(shù)y=x+$\frac{4}{x}$的圖象大致是C;

(3)對于函數(shù)y=x+$\frac{4}{x}$,求當(dāng)x>0時(shí),y的取值范圍.
請將下面求解此問題的過程補(bǔ)充完整:
解:∵x>0
∴y=x+$\frac{4}{x}$
=($\sqrt{x}$)2+($\frac{2}{\sqrt{x}}$)2
=($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2+2.
∵($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2≥0,
∴y≥2.
【拓展應(yīng)用】
(4)若函數(shù)y=$\frac{{x}^{2}+5x+4}{x}$,則y的取值范圍是y≥7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.計(jì)算:
(1)(-48)+8-(-25)×(-6)
(2)-22+[(3+32)×2-(-4)2].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知BE⊥AD,CF⊥AD,且BE=CF.請你判斷AD是△ABC的中線還是角平分線?請說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案