【題目】如圖,將△ABC繞點B逆時針旋轉(zhuǎn)40°,得到△A′B′C′,若點C′恰好落在邊BA的延長線上,且A′C′∥BC,連接CC′,則∠ACC′=度.

【答案】30
【解析】解:∵△ABC繞點B逆時針旋轉(zhuǎn)40°,

∴∠CAC′=40°,BC=BC′,∠ACB=∠A′C′B,

∵A′C′∥BC,

∴∠A′C′B=∠CAC′=40°,

∴∠ACB=40°,

∵BC=BC′,

∴∠BCC′=∠BC′C,

∴∠BCC′= (180°﹣40°)=70°,

∴∠ACC′=∠BCC′﹣∠ACB=70°﹣40°=30°.

所以答案是30.

【考點精析】本題主要考查了平行線的性質(zhì)和三角形的內(nèi)角和外角的相關(guān)知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCDABBC)的對角線的交點O旋轉(zhuǎn)(),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CDBC的交點.

1)該學習小組成員意外的發(fā)現(xiàn)圖(三角板一直角邊與OD重合)中,BN2CD2+CN2,在圖中(三角板一邊與OC重合),CN2BN2+CD2,請你對這名成員在圖和圖中發(fā)現(xiàn)的結(jié)論選擇其一說明理由.

2)試探究圖BNCN、CM、DM這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問題:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

則甲登山的的上升速度是 m/min;

請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數(shù)關(guān)系式.

當甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】推理填空

如圖,已知AB∥CD,∠A=∠C,試說明∠B=∠D

解:∵AB∥CD(已知)

∴∠B+∠C=180°

∵∠A=∠C(已知)

∴∠B+________=180°(等量代換)

∴AD∥BC

∴∠C+∠D=180°

∵∠B+∠C=180°(已證)

∴∠B=∠D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.

應(yīng)用:如圖,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】元旦期間,平價商場對該商場商品進行如下的優(yōu)惠促銷活動:

打折前一次性購物總金額

優(yōu)惠措施

小于等于 400

不優(yōu)惠

超過 400 元,但不超過 600

按售價打九折

超過 600

其中 600 元部分八折優(yōu)惠,超過 600 元的部分打六折優(yōu)惠

按上述優(yōu)惠條件,若小華一次性購買售價為 80 /件的商品 n 件時,實際付款 504 元, n=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=120°,B=D=90°,在BC,CD上分別找一點M,N,使AMN周長最小時,則∠AMN+ANM的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖E是平行四邊形BC上一點,且,連接AE,并延長AEDC的延長線交于點F,

1)請判斷的形狀,并說明理由;

2)求的各內(nèi)角的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習了二次根式的相關(guān)運算后,我們發(fā)現(xiàn)一些含有根號的式子可以表示成另一個式子的平方,如:

3+22+2+1()2+2+1(+1)2;

5+22+2+3()2+2××+()2(+)2

(1)請仿照上面式子的變化過程,把下列各式化成另一個式子的平方的形式:

①4+2;②6+4

(2)a+4(m+n)2,且a,m,n都是正整數(shù),試求a的值.

查看答案和解析>>

同步練習冊答案