【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,共調(diào)查了 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)學(xué)校在喜歡籃球的初一學(xué)生中挑選了3名同學(xué),分別是李明、林海和陳陽,然后在這3名學(xué)生中最終挑選2人參加學(xué)校的籃球隊(duì),請用列表法或畫樹狀圖的方法求出李明最終被選上的概率.
【答案】(1),,;(2)見解析;(3)樹狀圖見解析,
【解析】
(1)先利用跳繩的人數(shù)和它所占的百分比計(jì)算出調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)分別減去喜歡其它項(xiàng)目的人數(shù)可得到喜歡籃球項(xiàng)目的人數(shù),再計(jì)算出喜歡乒乓球項(xiàng)目的百分比,然后用800乘以樣本中喜歡籃球項(xiàng)目的百分比可估計(jì)全校學(xué)生中喜歡籃球項(xiàng)目的人數(shù);.
(2)根據(jù)樣本中喜歡籃球的人數(shù)即可補(bǔ)全條形圖;
(3)畫樹狀圖展示所有結(jié)果,找出符合條件的結(jié)果數(shù),利用概率公式進(jìn)行求解即可.
(1)調(diào)查的總?cè)藬?shù)為20÷40%=50(人),
“乒乓球”的百分比=×100%=20%;
調(diào)查中喜歡籃球的人數(shù)為:50-20-10-15=5,
所以估計(jì)喜歡籃球項(xiàng)目的同學(xué)的人數(shù)=800× =80,
故答案為:50,20,80;
(2)如圖:由題意可知
(3)樹狀圖:
共有6種等可能的結(jié)果,其中李明被選上有4種
∴P(李明).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)-2、0、-3、-2、-3、1、x的眾數(shù)是-3,則這組數(shù)據(jù)的中位數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】騎行是現(xiàn)在流行的健身方式之一,周末“綠色騎行俱樂部”組織了一次從甲地出發(fā),目的地為乙地的騎行活動(dòng),在“俱樂部”自行車隊(duì)出發(fā)1小時(shí)后,恰有一輛摩托車從甲地出發(fā),沿自行車隊(duì)行進(jìn)路線前往乙地,到達(dá)乙地后立即按原路返回甲地.自行車隊(duì)與摩托車行駛速度均保持不變,并且摩托車行駛速度是自行車隊(duì)行駛速度的3倍.如圖所示的是自行車隊(duì)、摩托車離甲地的路程與自行車隊(duì)離開甲地的時(shí)間的關(guān)系圖象,請根據(jù)圖象提供的信息,回答下列問題.
(1)摩托車行駛的速度是__________;____________;
(2)求出自行車隊(duì)離甲地的路程與自行車隊(duì)離開甲地的時(shí)間的關(guān)系式,并求出自行車隊(duì)出發(fā)多少小時(shí)與摩托車相遇;
(3)直接寫出當(dāng)摩托車與自行車隊(duì)相距時(shí),此時(shí)離摩托車出發(fā)經(jīng)過了多少小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,是一條對角線,點(diǎn)在直線上(不與點(diǎn)、重合),連接,平移,使點(diǎn)移動(dòng)到點(diǎn),得到,過點(diǎn)作于,連接,.
(問題發(fā)現(xiàn))
(1)如圖①,若點(diǎn)在線段上,與的數(shù)量關(guān)系是________,位置關(guān)系是________.
(拓展探究)
(2)如圖②,若點(diǎn)在線段的延長線上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給出證明,否則說明理由.
(解決問題)
(3)若點(diǎn)在線段的延長線上,且,正方形的邊長為2,請直接寫出求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線與反比例函數(shù)的圖象交于點(diǎn),,與坐標(biāo)軸交于A、B兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)觀察圖象,當(dāng)時(shí),直接寫出不等式的解集;
(3)將直線向下平移個(gè)單位,若直線與反比例函數(shù)的圖象有唯一交點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”越來越受到人們的關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有______人,條形統(tǒng)計(jì)圖中m的值為______;
(2)扇形統(tǒng)計(jì)圖中“了解很少”部分所對應(yīng)扇形的圓心角的度數(shù)為______;
(3)若該中學(xué)共有學(xué)生1800人,根據(jù)上述調(diào)查結(jié)果,可以估計(jì)出該學(xué)校學(xué)生中對校園安全知識達(dá)到“非常了解”和“基本了解”程度的總?cè)藬?shù)為______人;
(4)若從對校園安全知識達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),對稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點(diǎn),點(diǎn)是此函數(shù)圖象上的兩點(diǎn),則;④.其中正確的個(gè)數(shù)( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=2,BC=8,按下列步驟作圖:
①以點(diǎn)A為圓心,適當(dāng)?shù)拈L度為半徑作弧,分別交AB,AC于點(diǎn)E,F,再分別以點(diǎn)E,F為圓心,大于EF的長為半徑作弧相交于點(diǎn)H,作射線AH;
②分別以點(diǎn)A,B為圓心,大于AB的長為半徑作弧相交于點(diǎn)M,N,作直線MN,交射線AH于點(diǎn)O;
③以點(diǎn)O為圓心,線段OA長為半徑作圓.
則⊙O的半徑為( 。
A.2B.10C.4D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com