【題目】如圖,△ABC中,∠C=90°,AC=4cm,BC=3cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,沿C→A→B→C的路徑運(yùn)動(dòng)一周,且速度為每秒2cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t=_____時(shí),點(diǎn)P與△ABC的某兩個(gè)頂點(diǎn)構(gòu)成等腰三角形.
【答案】4或或或或3或.
【解析】
分點(diǎn)P在邊AC和邊AB上討論: 當(dāng)點(diǎn)P在邊AC上時(shí)和當(dāng)點(diǎn)P在邊AB上時(shí),進(jìn)行計(jì)算即可得到答案.
∵△ABC中,∠C=90°,AC=4cm,BC=3cm,
∴AB===5,
當(dāng)點(diǎn)P在邊AC上時(shí),當(dāng)PA=PB時(shí),如圖1,
作AB邊上的高PE,則AE=BE=,
易證得△APE∽△ABC,
∴,即,
∴AP=,
此時(shí)(4﹣)÷2=(秒);
當(dāng)CP=CB時(shí),
∵CP=3cm,此時(shí)t=3÷2=(秒);
當(dāng)點(diǎn)P在邊AB上時(shí),
當(dāng)AC=AP,此時(shí)(4+4)÷2=4(秒);
當(dāng)AP=PC時(shí),如圖2,
∴點(diǎn)P在AC的垂直平分線(xiàn)與AB的交點(diǎn)處,即在AB的中點(diǎn),
則AP=AB=,此時(shí)(4+2.5)÷2=(秒)
當(dāng)CP=CB時(shí),如圖3,
作AB邊上的高CD,
∵AC×BC=AB×CD.
∴CD==,
在Rt△CDP中,根據(jù)勾股定理得,DP==1.8,
∴BP=2DP=3.6,
∴AP=1.4,
∴t=(AC+AP)÷2=(4+1.4)÷2=(秒)
當(dāng)BC=BP時(shí),
∴BP=3cm,CA+AP=4+5﹣3=6(cm),
∴t=6÷2=3(秒);
當(dāng)PB=PC,
∴點(diǎn)P在BC的垂直平分線(xiàn)與AB的交點(diǎn)處,即在AB的中點(diǎn),
此時(shí)CA+AP=4+2.5=6.5(cm),
t=6.5÷2=(秒);
綜上可知,當(dāng)4或或或或3或時(shí)點(diǎn)P與△ABC的某兩個(gè)頂點(diǎn)構(gòu)成等腰三角形,故答案為4或或或或3或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,如果開(kāi)始輸入的值為1,則第一次輸出的結(jié)果是4,第二次輸出的結(jié)果是5,……;那么2021次輸出的結(jié)果是 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),進(jìn)行如下討論:
甲同學(xué):這種多邊形不一定是正多邊形,如圓內(nèi)接矩形.
乙同學(xué):我發(fā)現(xiàn)邊數(shù)是時(shí),它也不一定是正多邊形,如圖,是正三角形,,證明六邊形的各內(nèi)角相等,但它未必是正六邊形.
丙同學(xué):我能證明,邊數(shù)是時(shí),它是正多邊形,我想…,邊數(shù)是時(shí),它可能也是正多邊形.
請(qǐng)你說(shuō)明乙同學(xué)構(gòu)造的六邊形各內(nèi)角相等;
請(qǐng)你證明,各內(nèi)角都相等的圓內(nèi)接七邊形(如圖)是正七邊形;(不必寫(xiě)已知,求證)
根據(jù)以上探索過(guò)程,提出你的猜想.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為對(duì)稱(chēng)中心,把點(diǎn)A(3,4)逆時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為()
A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】滿(mǎn)足下列條件的△ABC不是直角三角形的是( )
A.∠A:∠B:∠C=2:3:5B.∠A:∠B:∠C=3:4:5
C.∠A﹣∠B=∠CD.BC=3,AC=4,AB=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在8×8的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.
(1)畫(huà)出△ABC關(guān)于直線(xiàn)l對(duì)稱(chēng)的△A1B1C1;
(2)在直線(xiàn)l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短;(不寫(xiě)作法,保留作圖痕跡)
(3)△ABC 直角三角形(填“是”或“不是”),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)如圖①,在AB上取一點(diǎn)D,將紙片沿OD翻折,使點(diǎn)A落在BC邊上的點(diǎn)E處,求D、E兩點(diǎn)的坐標(biāo);
(2)如圖②,若OE上有一動(dòng)點(diǎn)P(不與O,E重合),從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿OE方向向點(diǎn)E勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<5),過(guò)點(diǎn)P作PM⊥OE交OD于點(diǎn)M,連接ME,求當(dāng)t為何值時(shí),以點(diǎn)P、M、E為頂點(diǎn)的三角形與△ODA相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在八年級(jí)(1)班學(xué)生中開(kāi)展對(duì)于“我國(guó)國(guó)家公祭日”知曉情況的問(wèn)卷調(diào)調(diào)查. 問(wèn)卷調(diào)查的結(jié)果分為A、B、C、D四類(lèi),其中A類(lèi)表示“非常了解”;B類(lèi)表示“比較了解”;C類(lèi)表示“基本了解”;D類(lèi)表示“不太了解”;班長(zhǎng)將本班同學(xué)的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)上述信息解答下列問(wèn)題:
(1)該班參與問(wèn)卷調(diào)查的人數(shù)有 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求C類(lèi)人數(shù)占總調(diào)查人數(shù)的百分比;
(4)求扇形統(tǒng)計(jì)圖中A類(lèi)所對(duì)應(yīng)扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知,且3x+4z﹣2y=40,求x,y,z的值;
(2)已知:兩相似三角形對(duì)應(yīng)高的比為3:10,且這兩個(gè)三角形的周長(zhǎng)差為560cm,求它們的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com