【題目】已知二次函數(shù)y2x24x6

1)用配方法將y2x24x6化成yaxh2+k的形式;

2)在所給的平面直角坐標(biāo)系中,畫出這個二次函數(shù)的圖象;

3)當(dāng)﹣2x3時,觀察圖象直接寫出函數(shù)y的取值范圍;

4)若直線yk與拋物線沒有交點,直接寫出k的范圍.

【答案】1y2x24x6;(2)如圖,即為函數(shù)y2x24x6的圖象.見解析;(3)當(dāng)﹣2x3時,函數(shù)y的取值范圍為﹣8y10;(4)直線yk與拋物線沒有交點時,k<﹣8

【解析】

1)用配方法配方即可.

2)按列表,描點,連線的步驟繪制即可.

3)根據(jù)畫出的圖像直接寫出答案即可.

4)將二次函數(shù)與直線方程聯(lián)立成一個一元二次方程,沒有交點,說明根的判別式小于0,即可求出k的范圍.

1y2x24x62x128;

2)如圖:即為函數(shù)y2x24x6的圖象.

x

1

0

1

2

3

y

0

6

8

6

0

3)觀察圖象知:

當(dāng)x=﹣2時,y10,頂點坐標(biāo)為(1,﹣8

即函數(shù)的最小值為﹣8,

所以﹣8y10

答:當(dāng)﹣2x3時,函數(shù)y的取值范圍為﹣8y10

42x24x6k,整理得:

2x24x6k0

∵△=16+86+k)=64+8k

64+8k0,即k<﹣8

答:直線yk與拋物線沒有交點時,k<﹣8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像與直線交于點、點.

1)求的表達(dá)式和的值;

2)當(dāng)時,求自變量的取值范圍;

3)將直線沿軸上下平移,當(dāng)平移后的直線與拋物線只有一個公共點時,求平移后的直線表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角坐標(biāo)平面上的ΔABC,AC=CB,∠ACB=90°,且A(-10),B(m,n),C(3,0).若拋物線經(jīng)過A、C兩點.

(1)a、b的值;

(2)將拋物線向上平移若干個單位得到的新拋物線恰好經(jīng)過點B,求新拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為( 。

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弦AB2cm,∠AOB120°,則⊙O的半徑為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小陽在如圖所示的扇形舞臺上沿O-M-N勻速行走,他從點O出發(fā),沿箭頭所示的方向經(jīng)過點M再走到點N,共用時70秒有一臺攝像機選擇了一個固定的位置記錄了小陽的走路過程,設(shè)小陽走路的時間為t單位:秒,他與攝像機的距離為y單位:米,表示y與t的函數(shù)關(guān)系的圖象大致如圖,則這個固定位置可能是圖中的

A點Q B點P C點M D點N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 是等邊三角形,D 為 CB 延長線上一點,E 為 BC 延長線上點.

(1)當(dāng) BD、BC CE 滿足什么條件時,△ADB∽△EAC?

(2)當(dāng)△ADB∽△EAC 時,求∠DAE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過半徑OD的中點,點E為⊙O上一動點,CF⊥AE于點F.當(dāng)點E從點B出發(fā)順時針運動到點D時,點F所經(jīng)過的路徑長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將面積為的矩形ABCD的四邊BACB、DC、AD分別延長至E、F、G、H,使得AE=CGBF=BC, DH=AD,連接EF, FGGH,HE,AF,CH.若四邊形EFGH為菱形,,則菱形EFGH的面積是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案