【題目】如圖,是等腰直角三角形,,.折疊該紙片,使點(diǎn)落在線段上,折痕與邊交于點(diǎn),與邊交于點(diǎn).
(1)若折疊后使點(diǎn)與點(diǎn)重合,此時(shí)__________;
(2)若折疊后使點(diǎn)與邊的中點(diǎn)重合,求的長(zhǎng)度;
(3)若折疊后點(diǎn)落在邊上的點(diǎn)為,且使,求此時(shí)的長(zhǎng)度.
【答案】(1) (2) (3)
【解析】
(1)若折疊后使點(diǎn)與點(diǎn)重合,此時(shí)CD為的中位線,所以OC=OA=2;
(2)根據(jù)折疊的性質(zhì)及題意可得,CE=AC,在中,設(shè)OC=m,根據(jù)勾股定理列方程,解方程即可;
(3)根據(jù)折疊的性質(zhì)及,可推出,進(jìn)而推出,根據(jù)相似三角形的性質(zhì)得到,在中,設(shè),根據(jù)勾股定理列方程,解方程即可求出的長(zhǎng)度.
解:(1);
(2)如圖,
折疊后使點(diǎn)與邊的中點(diǎn)重合,
,
.
設(shè)OC=m,
則,
,
在中,由勾股定理,得,
即,解得.
的長(zhǎng)度為1.5;
(3)如圖,
折疊后點(diǎn)落在邊上的點(diǎn)為,且使,
則.
,
,
,
,
.
,
,
在中,
設(shè),
則,
在中,由勾股定理,得,
,
解得.
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)求的面積;
(3)根據(jù)圖象直接寫出的x的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車分別從兩地同時(shí)出發(fā),沿同一條公路相向行駛,相遇后,甲車?yán)^續(xù)以原速行駛到地,乙車立即以原速原路返回到地,甲、乙兩車距地的路程與各自行駛的時(shí)間之間的關(guān)系如圖所示.
⑴________,________;
⑵求乙車距地的路程關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;
⑶當(dāng)甲車到達(dá)地時(shí),求乙車距地的路程
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC是圓O的內(nèi)接三角形,過(guò)點(diǎn)O作OD⊥AB與點(diǎn)D,連接OA,點(diǎn)E是AC的中點(diǎn),延長(zhǎng)EO交BC于點(diǎn)F.
(1)求證:△CEF∽△ODA.
(2)若,△ABC是不是等腰三角形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D時(shí)拋物線的頂點(diǎn)
(1)求拋物線的解析式和直線的解析式;
(2)試探究:在拋物線上是否存在點(diǎn)P,使得以點(diǎn)為頂點(diǎn),為直角邊的三角形是直角三角形,若存在,請(qǐng)求出,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于及一個(gè)矩形給出如下定義:如果上存在到此矩形四份頂點(diǎn)距離都相等的點(diǎn),那么稱是該矩形的“等距圓”,如圖,平面直角坐標(biāo)系中,矩形的頂點(diǎn)坐標(biāo)為,頂點(diǎn)在軸上,,且的半徑為.
(1)在,,中可以成為矩形的“等距圓”的圓心的是__________.
(2)如果點(diǎn)在直線上,且是矩形的“等距圓”,那么點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物經(jīng)過(guò)點(diǎn),與軸負(fù)半軸交于點(diǎn),且,其中點(diǎn)坐標(biāo)為,對(duì)稱軸為直線.
(1)求拋物線的解析式;
(2) 在軸上方有一點(diǎn), 連接后滿足, 記的面積為, 求當(dāng)時(shí)點(diǎn)的坐標(biāo)
(3)在的條件下,當(dāng)點(diǎn)恰好落在拋物線上時(shí),將直線上下平移,平移后的時(shí)點(diǎn)的坐標(biāo);直線與拋物線交于兩點(diǎn)(在的左側(cè)),若以點(diǎn)為頂點(diǎn)的三角形是直角三角形,求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自行車因其便捷環(huán)保深受人們喜愛(ài),成為日常短途代步與健身運(yùn)動(dòng)首選.如圖1是某品牌自行車的實(shí)物圖,圖2是它的簡(jiǎn)化示意圖.經(jīng)測(cè)量,車輪的直徑為,中軸軸心到地面的距離為,后輪中心與中軸軸心連線與車架中立管所成夾角,后輪切地面于點(diǎn).為了使得車座到地面的距離為,應(yīng)當(dāng)將車架中立管的長(zhǎng)設(shè)置為_____________.
(參考數(shù)據(jù):
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD內(nèi)一點(diǎn),連接PA、PB、PC、PD,已知AB=3,BC=4,設(shè)△PAB、△PBC、△PCD、△PDA的面積分別為S1、S2、S3、S4,以下判斷,其中不正確的是( )
A.PA+PB+PC+PD的最小值為10
B.若△PAB≌△PCD,則△PAD≌△PBC
C.若△PAB△PDA,則PA=2
D.若S1=S2,則S3=S4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com