【題目】如圖,已知第一象限內(nèi)的圖象是反比例函數(shù)y= 圖象的一個(gè)分支,第二象限內(nèi)的圖象是反比例函數(shù)y=﹣ 圖象的一個(gè)分支,在x軸的上方有一條平行于x軸的直線l與它們分別交于點(diǎn)A、B,過(guò)點(diǎn)A、B作x軸的垂線,垂足分別為C、D.若四邊形ABCD的周長(zhǎng)為8且AB<AC,則點(diǎn)A的坐標(biāo)為 .
【答案】( ,3)
【解析】解:點(diǎn)A在反比例函數(shù)y= 圖象上,設(shè)A點(diǎn)坐標(biāo)為(a, ),
∵AB平行于x軸,
∴點(diǎn)B的縱坐標(biāo)為 ,
而點(diǎn)B在反比例函數(shù)y=﹣ 圖象上,
∴B點(diǎn)的橫坐標(biāo)=﹣2×a=﹣2a,即B點(diǎn)坐標(biāo)為(﹣2a, ),
∴AB=a﹣(﹣2a)=3a,AC= ,
∵四邊形ABCD的周長(zhǎng)為8,而四邊形ABCD為矩形,
∴AB+AC=4,即3a+ =4,
整理得,3a2﹣4a+1=0,(3a﹣1)(a﹣1)=0,
∴a1= ,a2=1,
而AB<AC,
∴a= ,
∴A點(diǎn)坐標(biāo)為( ,3).
所以答案是:( ,3).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的圖象的相關(guān)知識(shí),掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn),以及對(duì)反比例函數(shù)的性質(zhì)的理解,了解性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減小; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尤秀同學(xué)遇到了這樣一個(gè)問(wèn)題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.
求證:a2+b2=5c2
該同學(xué)仔細(xì)分析后,得到如下解題思路:
先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來(lái),再在Rt△APE,Rt△BPF中利用勾股定理計(jì)算,消去m,n即可得證
(1)請(qǐng)你根據(jù)以上解題思路幫尤秀同學(xué)寫出證明過(guò)程.
(2)利用題中的結(jié)論,解答下列問(wèn)題:在邊長(zhǎng)為3的菱形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),E,F(xiàn)分別為線段AO,DO的中點(diǎn),連接BE,CF并延長(zhǎng)交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖2所示,求MG2+MH2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)數(shù)值轉(zhuǎn)換器.
(1)當(dāng)輸入x=25時(shí),求輸出的y的值;
(2)是否存在輸入x的值后,始終輸不出y的值?如果存在,請(qǐng)直接寫出所有滿足要求的x值;如果不存在,請(qǐng)說(shuō)明理由;
(3)輸入一個(gè)兩位數(shù)x,恰好經(jīng)過(guò)三次取算術(shù)平方根才能輸出無(wú)理數(shù)y,則x=________(只填一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測(cè)得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時(shí),PC=30m,點(diǎn)C與點(diǎn)A在同一水平線上,A、B、P、C在同一平面內(nèi).
(1)求居民樓AB的高度;
(2)求C、A之間的距離.
(精確到0.1m,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】海南有豐富的旅游產(chǎn)品.某校九年級(jí)(1)班的同學(xué)就部分旅游產(chǎn)品的喜愛情況對(duì)游客隨機(jī)調(diào)查,要求游客在列舉的旅游產(chǎn)品中選出喜愛的產(chǎn)品,且只能選一項(xiàng).以下是同學(xué)們整理的不完整的統(tǒng)計(jì)圖:
根據(jù)以上信息完成下列問(wèn)題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)隨機(jī)調(diào)查的游客有人;在扇形統(tǒng)計(jì)圖中,A部分所占的圓心角是度;
(3)請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)在1500名游客中喜愛攀錦的約有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知半徑為2的⊙O與直線l相切于點(diǎn)A,點(diǎn)P是直徑AB左側(cè)半圓上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l的垂線,垂足為C,PC與⊙O交于點(diǎn)D,連接PA、PB,設(shè)PC的長(zhǎng)為x(2<x<4).
(1)當(dāng)x= 時(shí),求弦PA、PB的長(zhǎng)度;
(2)當(dāng)x為何值時(shí),PDCD的值最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題
(1)如圖(1)點(diǎn)P是正方形ABCD的邊CD上一點(diǎn)(點(diǎn)P與點(diǎn)C,D不重合),點(diǎn)E在BC的延長(zhǎng)線上,且CE=CP,連接BP,DE.求證:△BCP≌△DCE;
(2)直線EP交AD于F,連接BF,F(xiàn)C.點(diǎn)G是FC與BP的交點(diǎn). ①若CD=2PC時(shí),求證:BP⊥CF;
②若CD=nPC(n是大于1的實(shí)數(shù))時(shí),記△BPF的面積為S1 , △DPE的面積為S2 . 求證:S1=(n+1)S2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AD=10cm,CD=6cm,E為AD上一點(diǎn),且BE=BC,CE=CD,則DE=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC和△DEF的頂點(diǎn)坐標(biāo)分別為A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).
按下列要求畫圖:以O(shè)為位似中心,將△ABC向y軸左側(cè)按比例尺2:1放大得△ABC的位似圖形△A1B1C1 , 并解決下列問(wèn)題:
(1)頂點(diǎn)A1的坐標(biāo)為 , B1的坐標(biāo)為 , C1的坐標(biāo)為;
(2)請(qǐng)你利用旋轉(zhuǎn)、平移兩種變換,使△A1B1C1通過(guò)變換后得到△A2B2C2 , 且△A2B2C2恰與△DEF拼接成一個(gè)平行四邊形(非正方形),寫出符合要求的變換過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com