分析 由a與b為直角三角形的兩條直角邊,利用勾股定理表示出c2=a2+b2,代入已知的等式中,得到關(guān)于c的方程,配方后,直接開(kāi)平方求出方程的解即可得到斜邊的長(zhǎng).
解答 解:∵a,b是一個(gè)直角三角形兩條直角邊的長(zhǎng),
∴根據(jù)勾股定理得:c2=a2+b2,
已知等式化為c2(c2-8)=16,即c4-8c2=-16,
配方得:(c2-4)2=0,
可得c2=4,
解得:c=2或c=-2(舍去),
則斜邊為2.
點(diǎn)評(píng) 此題考查了配方法解一元二次方程,以及勾股定理,熟練運(yùn)用勾股定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1對(duì) | B. | 2對(duì) | C. | 3對(duì) | D. | 4對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{t}{2}$不是整式 | B. | -2x2y與y2x是同類(lèi)項(xiàng) | ||
C. | $\frac{1}{y}$是單項(xiàng)式 | D. | -3x2y的次數(shù)是4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com