【題目】學(xué)校計(jì)劃購(gòu)買(mǎi)某種樹(shù)苗綠化校園,甲、乙兩林場(chǎng)這種樹(shù)苗的售價(jià)都是每棵20元,又各有不同的優(yōu)惠方案,甲林場(chǎng):若一次購(gòu)買(mǎi)20棵以上,售價(jià)是每棵18元;乙林場(chǎng):若一次購(gòu)買(mǎi)10棵以上,超過(guò)10棵部分打8.5折。設(shè)學(xué)校一次購(gòu)買(mǎi)這種樹(shù)苗x棵(x是正整數(shù)).
(Ⅰ)根據(jù)題意填寫(xiě)下表:
學(xué)校一次購(gòu)買(mǎi)樹(shù)苗(棵) | 10 | 15 | 20 | 40 |
在甲林場(chǎng)實(shí)際花費(fèi)(元) | 200 | 300 | ||
在乙林場(chǎng)實(shí)際花費(fèi)(元) | 200 | 370 | 710 |
(Ⅱ)學(xué)校在甲林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗,實(shí)際花費(fèi)記為(元),在乙林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗,實(shí)際花費(fèi)記為(元),請(qǐng)分別寫(xiě)出與x的函數(shù)關(guān)系式;
(Ⅲ)當(dāng)時(shí),學(xué)校在哪個(gè)林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗,實(shí)際花費(fèi)較少?為什么?
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ),;(Ⅲ)當(dāng)時(shí),在甲林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗實(shí)際花費(fèi)較少,見(jiàn)解析.
【解析】
(Ⅰ)根據(jù)甲林場(chǎng):若一次購(gòu)買(mǎi)20棵以上,售價(jià)是每棵18元;乙林場(chǎng):若一次購(gòu)買(mǎi)10棵以上,超過(guò)10棵部分打8.5折,進(jìn)行計(jì)算即可
(Ⅱ)根據(jù)兩林場(chǎng)不同的優(yōu)惠方案以及實(shí)際花費(fèi)=每棵樹(shù)的單價(jià)樹(shù)的棵數(shù),列出分段函數(shù)
(Ⅲ)根據(jù)兩函數(shù)解析式分別討論在哪個(gè)林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗,實(shí)際花費(fèi)較少,求出對(duì)應(yīng)的x的取值范圍,即可得出結(jié)論
解:(I)
一次購(gòu)買(mǎi)數(shù)(棵) | 10 | 15 | 20 | 40 |
在甲林場(chǎng)實(shí)際花費(fèi)(元) | 200 | 300 | 400 | 720 |
在乙林場(chǎng)實(shí)際花費(fèi)(元) | 200 | 285 | 370 | 710 |
(Ⅱ)根據(jù)愿意,得
(Ⅲ)當(dāng)時(shí),有
記.由,得.
由,有y隨x的增大固增大,
∴當(dāng)時(shí),.當(dāng)時(shí),.
因此,當(dāng)時(shí),在甲林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗實(shí)際花費(fèi)較少。
當(dāng)時(shí),在甲、乙兩個(gè)林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗實(shí)際花費(fèi)一樣
當(dāng)時(shí),在乙林場(chǎng)一次購(gòu)買(mǎi)樹(shù)苗實(shí)際花費(fèi)較少。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx+2(a≠0)與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,連接BC.
(1)求該拋物線的解析式,并寫(xiě)出它的對(duì)稱(chēng)軸;
(2)點(diǎn)D為拋物線對(duì)稱(chēng)軸上一點(diǎn),連接CD、BD,若∠DCB=∠CBD,求點(diǎn)D的坐標(biāo);
(3)已知F(1,1),若E(x,y)是拋物線上一個(gè)動(dòng)點(diǎn)(其中1<x<2),連接CE、CF、EF,求△CEF面積的最大值及此時(shí)點(diǎn)E的坐標(biāo).
(4)若點(diǎn)N為拋物線對(duì)稱(chēng)軸上一點(diǎn),拋物線上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有、型兩種客車(chē),它們的載客量和租金如下表:
型客車(chē) | 型客車(chē) | |
載客量/(人/輛) | ||
租金/(元/輛) |
某學(xué)校計(jì)劃在總費(fèi)用元的限額內(nèi),租用、型客車(chē)共5輛送九年級(jí)師生集體外出活動(dòng).
(Ⅰ)設(shè)租用型客車(chē)輛(為非負(fù)整數(shù)),根據(jù)題意,用含的式子填寫(xiě)下表:
車(chē)輛數(shù)/輛 | 載客量 | 租金/元 | |
型客車(chē) | |||
型客車(chē) |
(Ⅱ)若九年級(jí)師生共有人,請(qǐng)給出能完成此項(xiàng)任務(wù)的最節(jié)省費(fèi)用的租車(chē)方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.
(1)△ABC的面積等于 ;
(2)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請(qǐng)你在如圖所示的網(wǎng)格中,用直尺和三角尺畫(huà)出該正方形,并簡(jiǎn)要說(shuō)明畫(huà)圖方法(不要求證明) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(為常數(shù),)經(jīng)過(guò)點(diǎn),且關(guān)于直線對(duì)稱(chēng),是拋物線與x軸的一個(gè)交點(diǎn).有下列結(jié)論:①方程的一個(gè)根是x=-2;②若,則;③若時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,則;④若時(shí),,則.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在兩建筑物之間有一高為15米的旗桿,從高建筑物的頂端A點(diǎn)經(jīng)過(guò)旗桿頂點(diǎn)恰好看到矮建筑物的底端墻角C點(diǎn),且俯角a為60°,又從A點(diǎn)測(cè)得矮建筑物左上角頂端D點(diǎn)的俯角β為30°,若旗桿底部點(diǎn)G為BC的中點(diǎn)(點(diǎn)B為點(diǎn)A向地面所作垂線的垂足)則矮建筑物的高CD為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】瑞安市曹村鎮(zhèn)“八百年燈會(huì)”成為溫州“申遺”的寶貴項(xiàng)目.某公司生產(chǎn)了一種紀(jì)念花燈,每件紀(jì)念花燈制造成本為18元.設(shè)銷(xiāo)售單價(jià)x(元),每日銷(xiāo)售量y(件)每日的利潤(rùn)w(元).在試銷(xiāo)過(guò)程中,每日銷(xiāo)售量y(件)、每日的利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間存在一定的關(guān)系,其幾組對(duì)應(yīng)量如下表所示:
(元) | 19 | 20 | 21 | 30 |
(件) | 62 | 60 | 58 | 40 |
(1)根據(jù)表中數(shù)據(jù)的規(guī)律,分別寫(xiě)出毎日銷(xiāo)售量y(件),每日的利潤(rùn)w(元)關(guān)于銷(xiāo)售單價(jià)x(元)之間的函數(shù)表達(dá)式.(利潤(rùn)=(銷(xiāo)售單價(jià)﹣成本單價(jià))×銷(xiāo)售件數(shù)).
(2)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),公司每日能夠獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)根據(jù)物價(jià)局規(guī)定,這種紀(jì)念品的銷(xiāo)售單價(jià)不得高于32元,如果公司要獲得每日不低于350元的利潤(rùn),那么制造這種紀(jì)念花燈每日的最低制造成本需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C處測(cè)得教學(xué)樓頂部D處的仰角為18°,教學(xué)樓底部B處的俯角為20°,教學(xué)樓的高BD=21m,求實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB(結(jié)果保留整數(shù)).(參考數(shù)據(jù):tan18°≈0.32,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠BAC=60°,點(diǎn)P為邊BC的中點(diǎn),分別以AB和AC為斜邊向外作Rt△ABD和Rt△ACE,且∠DAB=∠EAC=α,連結(jié)PD,PE,DE.
(1)如圖1,若α=45°,則= ;
(2)如圖2,若α為任意角度,求證:∠PDE=α;
(3)如圖3,若α=15°,AB=8,AC=6,則△PDE的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com