【題目】如圖,△ABC,A、B兩個頂點在軸的上方,C的坐標是(1,0).以點C為位似中心,x軸的下方作ABC的位似圖形,并把ABC的邊長放大到原來的2,設點B的對應點B′的橫坐標是a,則點B的橫坐標是( )

A. B. C. D.

【答案】D

【解析】

ABC的邊長是△ABC的邊長的2倍,過B點和B′點作x軸的垂線,垂足分別是DE,因為點B′的橫坐標是a,則EC=a+1.可求DC=(a+1),則B點的橫坐標是-(a+1)-1= (a+3).

B點和B′點作x軸的垂線,垂足分別是DE

∵點B′的橫坐標是a,點C的坐標是(-1,0).

EC=a+1

又∵△ABC的邊長是△ABC的邊長的2

DC=(a+1)

DO=(a+3)

B點的橫坐標是 (a+3)

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD平分∠BACDGBC且平分BC,DEABEDFACF

(1) 說明BECF的理由

(2) 如果ABa,ACb,求AE、BE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)感知:如圖1,AD平分∠BAC,∠B+C180°,∠B90°,易知DBDC數(shù)量關系為:   

2)探究:如圖2,AD平分∠BAC,∠ABD+ACD180°,∠ABD90°,(1)中的結(jié)論是否成立?請作出判斷并給予證明.

3)應用:如圖3,在四邊形ABCD中,DBDC,∠ABD+ACD180°,∠ABD90°,DEAB于點E,試判斷AB,AC,BE的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC,A,B,C三點在三角形內(nèi)分別作∠1=2=3,三個角的邊相交于D,E,F,

1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明.
2)△DEF是否為正三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC和△DEF是兩塊可完全重合的三角板,,.在如圖1所示的狀態(tài)下,△DEF固定不動,將△ABC沿直線a向左平移.

(1)當△ABC移到圖2位置時,連解AF、DC,求證:AF=DC

(2)若EF=8,在上述平移過程中,試猜想點C距點E多遠時,線段AD被直線a垂直平分。并證明你的猜想是正確的。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,tanA=.點D,E分別是邊BC,AC上的點,且∠EDC=∠A.將△ABC沿DE所在直線對折,若點C恰好落在邊AB上,則DE的長為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.

(1)求BCD的度數(shù).

(2)求教學樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°0.36,tan18°0.32)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形中,對角線,相交于點,且,,動點,分別從點,同時出發(fā),運動速度均為,點沿運動,到點停止,點沿運動,到點停止后繼續(xù)運動,到點停止,連接,.設的面積為(這里規(guī)定:線段是面積的幾何圖形),點的運動時間為

如圖,菱形中,對角線相交于點,且,,動點,分別從點,同時出發(fā),運動速度均為,點沿運動,到點停止,點沿運動,到點停止后繼續(xù)運動,到點停止,連接,.設的面積為(這里規(guī)定:線段是面積的幾何圖形),點的運動時間為

填空:________,之間的距離為________;

時,求之間的函數(shù)解析式;

直接寫出在整個運動過程中,使與菱形一邊平行的所有的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在直角坐標平面內(nèi),三個頂點的坐標分別為、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

向下平移個單位長度得到的,點的坐標是________;

以點為位似中心,在網(wǎng)格內(nèi)畫出,使位似,且位似比為,點的坐標是________;(畫出圖形)

的面積是________平方單位.

查看答案和解析>>

同步練習冊答案