【題目】某水果批發(fā)商經(jīng)營(yíng)甲、乙兩種水果,根據(jù)以往經(jīng)驗(yàn)和市場(chǎng)行情,預(yù)計(jì)夏季某一段時(shí)間內(nèi),甲種水果的銷售利潤(rùn)(萬(wàn)元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系,乙種水果的銷售利潤(rùn)(萬(wàn)元)與進(jìn)貨量x(噸)之間的函數(shù)關(guān)系如圖所示.
(1)求(萬(wàn)元)與x(噸)之間的函數(shù)關(guān)系式;
(2)如果該批發(fā)商準(zhǔn)備進(jìn)甲、乙兩種水果共10噸,設(shè)乙種水果的進(jìn)貨量為t噸,請(qǐng)你求出這兩種水果所獲得的銷售利潤(rùn)總和W(萬(wàn)元)與t(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤(rùn)總和最大,最大利潤(rùn)是多少?
【答案】(1);(2)甲、乙兩種水果的進(jìn)貨量分別為4噸和6噸時(shí),獲得的銷售利潤(rùn)總和最大,最大利潤(rùn)是5.6萬(wàn)元.
【解析】
(1)根據(jù)題意列出二元一次方程組,求出a、b的值即可求出函數(shù)關(guān)系式的解.
(2)由題意可得,用配方法化簡(jiǎn)函數(shù)關(guān)系式即可求出w的最大值.
(1)根據(jù)圖象,可設(shè)(其中,a,b為常數(shù)),
由題意,得解得解得
∴.
(2)∵乙種水果的進(jìn)貨量為t噸,則甲種水果的進(jìn)貨量為噸,
由題意,得.
將函數(shù)配方為頂點(diǎn)式,得.
∵,∴拋物線開(kāi)口向下.
∵,∴時(shí),W有最大值為5.6.
∴(噸).
答:甲、乙兩種水果的進(jìn)貨量分別為4噸和6噸時(shí),獲得的銷售利潤(rùn)總和最大,最大利潤(rùn)是5.6萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC與正方形DEFG重疊,其中D、E兩點(diǎn)分別在AB、BC上,且BD=BE,若AB=6,DE=2,則△EFC的面積為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知半徑為2的⊙O與直線l相切于點(diǎn)A,點(diǎn)P是直徑AB左側(cè)半圓上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l的垂線,垂足為C,PC與⊙O交于點(diǎn)D,連接PA、PB,設(shè)PC的長(zhǎng)為x(2<x<4)
【1】當(dāng)時(shí),求弦PA、PB的長(zhǎng)度;
【2】當(dāng)x為何值時(shí),PD×CD的值最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正整數(shù)按如圖所示的規(guī)律排列下去,若用有序數(shù)對(duì)(m,n)表示第m排,從左到右第n個(gè)數(shù),如(3,2)表示正整數(shù)5,(4,3)表示正整數(shù)9,則(20,19)表示的正整數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為13的菱形ABCD沿AD方向平移至DCEF的位置,作EG⊥AB,垂足為點(diǎn)G,GD的延長(zhǎng)線交EF于點(diǎn)H,已知BD=24,則GH=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AC=4,BC=2,點(diǎn)D在射線AB上,在構(gòu)成的圖形中,△ACD為等腰三角形,且存在兩個(gè)互為相似的三角形,則CD的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( 。
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根分別為﹣5和﹣1
D. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“為了安全,請(qǐng)勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時(shí),為了檢測(cè)車輛是否超速,在公路MN旁設(shè)立了觀測(cè)點(diǎn)C,從觀測(cè)點(diǎn)C測(cè)得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請(qǐng)說(shuō)明理由.
(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P、點(diǎn)Q同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(),已知y與t之間的函數(shù)圖象如圖2所示.
給出下列結(jié)論:①當(dāng)0<t≤10時(shí),△BPQ是等腰三角形;②=48;③當(dāng)14<t<22時(shí),y=110-5t;④在運(yùn)動(dòng)過(guò)程中,使得△ABP是等腰三角形的P點(diǎn)一共有3個(gè);⑤△BPQ與△ABE相似時(shí),t=14.5.
其中正確結(jié)論的序號(hào)是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com