【題目】“同享一片藍(lán)天,共建美好家園”,北京某中學(xué)初三年級(jí)同學(xué)積極參與義務(wù)植樹(shù)活動(dòng).小明同學(xué)為了了解本年級(jí)600個(gè)同學(xué)在2019年義務(wù)植樹(shù)的數(shù)量,進(jìn)行了抽樣調(diào)查,隨即抽取了其中30個(gè)同學(xué),收集的數(shù)據(jù)如下(單位:棵)
(1)對(duì)以上數(shù)據(jù)進(jìn)行整理、描述和
①繪制如下的統(tǒng)計(jì)圖:
本年級(jí)30個(gè)同學(xué)在2019年義務(wù)植樹(shù)的數(shù)量統(tǒng)計(jì)圖
則該統(tǒng)計(jì)圖中種植3棵樹(shù)的有 個(gè)同學(xué),種植4棵樹(shù)的有 個(gè)同學(xué)
②這30個(gè)同學(xué)2019年義務(wù)植樹(shù)數(shù)量的中位數(shù)是 ,眾數(shù)_______;
(2)中國(guó)植樹(shù)節(jié)定于每年的3月12日,是中國(guó)為激發(fā)人們愛(ài)林、造林的熱情,促進(jìn)國(guó)土綠化,保護(hù)人類(lèi)賴(lài)以生存的生態(tài)環(huán)境.經(jīng)過(guò)進(jìn)一步調(diào)查,小明同學(xué)發(fā)現(xiàn)這30個(gè)同學(xué)中有23個(gè)是在3月份去義務(wù)植樹(shù)的,由此可以估計(jì)該年級(jí)所有同學(xué)中在3月份去義務(wù)植樹(shù)的有________個(gè).
【答案】(1)①11,9;②3,3;(2)460.
【解析】
(1)①直接在已知的數(shù)據(jù)表中尋找3出現(xiàn)的次數(shù)和4出現(xiàn)的次數(shù)即可;
②首先把這30個(gè)數(shù)按順序依次排列,然后取中間兩個(gè)數(shù)的平均值即為中位數(shù),眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值;
(2)可以先算出所調(diào)查的同學(xué)中,義務(wù)植樹(shù)的人數(shù)占總?cè)藬?shù)的比例,然后用該年級(jí)總?cè)藬?shù)乘以這個(gè)比例即可;
(1)①由已知數(shù)據(jù)可以得到種植3棵樹(shù)的有11個(gè)同學(xué),種植4棵樹(shù)的有9個(gè)同學(xué);
②30個(gè)數(shù)的中間數(shù)位第15和16個(gè)數(shù),由統(tǒng)計(jì)圖可以得到這兩個(gè)數(shù)分別是:3,3,所以中位數(shù)為3;由統(tǒng)計(jì)圖可得:眾數(shù)為3;
(2)(個(gè))
該年級(jí)所有同學(xué)中在3月份去義務(wù)植樹(shù)的大約有460個(gè);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).
(Ⅰ)如圖①,過(guò)點(diǎn)C作⊙O的切線,與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=32°,求∠P的大小;
(Ⅱ)如圖②,D為優(yōu)弧ADC上一點(diǎn),且DO的延長(zhǎng)線經(jīng)過(guò)AC的中點(diǎn)E,連接DC與AB相交于點(diǎn)P,若∠CAB=16°,求∠DPA的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知:在和中,,,分別在上,連接,點(diǎn)為線段的中點(diǎn),連接,則線段與之間的數(shù)量關(guān)系是 ,位置關(guān)系是
(2)如圖2所示,已知:正方形將斜邊的中點(diǎn)與點(diǎn)重合,直角頂點(diǎn)落在正方形的邊上,的兩直角邊分別交邊于兩點(diǎn)(點(diǎn)與點(diǎn)重合),求證:;
(3)如圖3,若將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),兩直角邊分別交邊于兩點(diǎn),如圖3所示:判斷四條線段之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折疊邊AD,使點(diǎn)D落在x軸上點(diǎn)F處,折痕為AE,已知AB=8,AD=10,并設(shè)點(diǎn)B坐標(biāo)為(m,0),其中m>0.
(1)求點(diǎn)E、F的坐標(biāo)(用含m的式子表示);(5分)
(2)連接OA,若△OAF是等腰三角形,求m的值;(4分)
(3)如圖(2),設(shè)拋物線y=a(x-m-6)2+h經(jīng)過(guò)A、E兩點(diǎn),其頂點(diǎn)為M,連接AM,若∠OAM=90°,求a、h、m的值. (5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,直線AB與CD的延長(zhǎng)線相交于點(diǎn)A,AB2=ADAC,OE∥BD交直線AB于點(diǎn)E,OE與BC相交于點(diǎn)F.
(1)求證:直線AE是⊙O的切線;
(2)若⊙O的半徑為3,cosA=,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),其中點(diǎn)B的坐標(biāo)為B(4,0),拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)D,CE∥AB,并與拋物線的對(duì)稱(chēng)軸交于點(diǎn)E.現(xiàn)有下列結(jié)論:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正確結(jié)論的序號(hào)是 _____________________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】行駛中的汽車(chē),在剎車(chē)后由于慣性的原因,還要繼續(xù)向前滑行一段距離才能停住,這段距離稱(chēng)為“剎車(chē)距離”.為了測(cè)定某種型號(hào)汽車(chē)的剎車(chē)性能,對(duì)這種汽車(chē)的剎車(chē)距離進(jìn)行測(cè)試,測(cè)得的數(shù)據(jù)如下表:
剎車(chē)時(shí)車(chē)速(千米/時(shí)) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
剎車(chē)距離(米) | 0 | 0.1 | 0.3 | 0.6 | 1 | 1.6 | 2.1 |
(1)在如圖所示的直角坐標(biāo)系中,以剎車(chē)時(shí)車(chē)速為橫坐標(biāo),以剎車(chē)距離為縱坐標(biāo),描出這些數(shù)據(jù)所表示的點(diǎn),并用平滑的曲線連結(jié)這些點(diǎn),得到某函數(shù)的大致圖象;
(2)測(cè)量必然存在誤差,通過(guò)觀察圖象估計(jì)函數(shù)的類(lèi)型,求出一個(gè)大致滿(mǎn)足這些數(shù)據(jù)的函數(shù)表達(dá)式;
(3)一輛該型號(hào)汽車(chē)在高速公路上發(fā)生交通事故,現(xiàn)場(chǎng)測(cè)得剎車(chē)距離約為40米,已知這條高速公路限速100千米/時(shí),請(qǐng)根據(jù)你確定的函數(shù)表達(dá)式,通過(guò)計(jì)算判斷在事故發(fā)生時(shí),汽車(chē)是否超速行駛.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)表示不大于的最大整數(shù),表示不小于的最小整數(shù),表示最接近的整數(shù)(為整數(shù)).例如則不等式的解為()
A. B. 或C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切于點(diǎn)D,過(guò)點(diǎn)B作,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E.
(Ⅰ)求證:AB=BE;
(Ⅱ)連結(jié)OC,如果PD=2,∠ABC=60°,求OC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com