【題目】如圖,在中,,,以為直徑作交于點(diǎn),是的中點(diǎn),連接.點(diǎn)在上,連接并延長交的延長線于點(diǎn).
(1)求證:是的切線;
(2)連接,求的最大值.
【答案】(1)見解析;(2)
【解析】
(1)連接OD,AD.根據(jù)圓周角定理得到∠ADB=90°,求得∠ADC=90°,根據(jù)線段中點(diǎn)的定義得到DE=AE,求得∠EAD=∠EDA,根據(jù)等腰三角形的性質(zhì)得到∠OAD=∠ODA,推出OD⊥DE,于是得到結(jié)論;
(2)過點(diǎn)F作FH⊥AB于點(diǎn)H,連接OF,得到∠AHF=90°.根據(jù)余角的想性質(zhì)得到∠G=∠BAF,根據(jù)相似三角形的性質(zhì)得到,由垂線段最短可得FH≤OF,當(dāng)且僅當(dāng)點(diǎn)H,O重合時等號成立.于是得到結(jié)論.
(1)證明:連接,.
∵為直徑,點(diǎn)在上,
∴,
∴.
∵是的中點(diǎn),
∴,
∴.
∵,
∴.
∵,
∴,
即,
∴.
∵是半徑的外端點(diǎn),
∴是的切線.
(2)過點(diǎn)作于點(diǎn),連接,
∴.
∵為直徑,點(diǎn)在上,
∴,
∴.
∵,
∴,
∴.
又,
∴,
∴.
由垂線段最短可得,
當(dāng)且僅當(dāng)點(diǎn),重合時等號成立.
∵,
∴上存在點(diǎn)使得,此時點(diǎn),重合,
∴,
即的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個矩形紙片放置在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)E,F分別在邊,上.沿著折疊該紙片,使得點(diǎn)A落在邊上,對應(yīng)點(diǎn)為,如圖①.再沿折疊,這時點(diǎn)E恰好與點(diǎn)C重合,如圖②.
(Ⅰ)求點(diǎn)C的坐標(biāo);
(Ⅱ)將該矩形紙片展開,再折疊該矩形紙片,使點(diǎn)O與點(diǎn)F重合,折痕與相交于點(diǎn)P,展開矩形紙片,如圖③.
①求的大;
②點(diǎn)M,N分別為,上的動點(diǎn),當(dāng)取得最小值時,求點(diǎn)N的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次臺風(fēng)來襲時,一棵筆直大樹樹干AB(假定樹干AB垂直于水平地面)被刮傾斜7°(即∠BAB′=7°)后折斷倒在地上,樹的頂部恰好接觸到地面D處,測得∠CDA=37°,AD=5米,求這棵大樹AB的高度.(結(jié)果保留根號)(參考數(shù)據(jù):sin37≈0.6,cos37=0.8,tan37≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源,生活垃圾一般按如圖所示A、B、C、D四種分類方法回收處理,某城市環(huán)保部門為了提高宣傳實(shí)效,抽樣調(diào)查、統(tǒng)計了部分居民小區(qū)一段時間內(nèi)生活垃圾的分類處理情況,并將調(diào)查統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖表:
根據(jù)圖表解答下列問題:
(1)請將條形統(tǒng)計圖補(bǔ)充完整;
(2)在抽樣數(shù)據(jù)中,產(chǎn)生的有害垃圾共 噸;
(3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類垃圾占,每回收1噸塑料類垃圾可獲得0.7噸二級原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為5000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級原料?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是弧的中點(diǎn),作點(diǎn)關(guān)于弦的對稱點(diǎn),連接并延長交于點(diǎn),過點(diǎn)作于點(diǎn),若,則等于_________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮和小剛利用學(xué)過的測量知識測量一座房子的高度,如圖所示,他們先在地面上的點(diǎn)處豎直放了一根標(biāo)桿,在房子和標(biāo)桿之間的地面上平放一平面鏡,并在鏡面上做了一個標(biāo)記,小剛來回移動平面鏡,當(dāng)這個標(biāo)記與地面上的點(diǎn)重合時,小亮在標(biāo)桿頂端處剛好看到房子的頂端點(diǎn)在鏡面中的像與鏡面上的標(biāo)記重合,此時,在處測得房子頂端點(diǎn)的仰角為,點(diǎn)到點(diǎn)的距離為0.8米.標(biāo)桿的長度為1米,已知點(diǎn)在同一水平直線上,且均垂直于,求房子的高度(平面鏡的厚度忽略不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知菱形ABCD中,對角線AC和BD相交于點(diǎn)O,AC=8,BD=6,動點(diǎn)P在邊AB上運(yùn)動,以點(diǎn)O為圓心,OP為半徑作⊙O,CQ切⊙O于點(diǎn)Q.則在點(diǎn)P運(yùn)動過程中,切線CQ的長的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=8,BC=6,點(diǎn)P從點(diǎn)B出發(fā)以1個單位/s的速度向點(diǎn)A運(yùn)動,同時點(diǎn)Q從點(diǎn)C出發(fā)以2個單位/s的速度向點(diǎn)B運(yùn)動.當(dāng)以B,P,Q為頂點(diǎn)的三角形與△ABC相似時,運(yùn)動時間為( 。
A.sB.sC.s或sD.以上均不對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com