【題目】如圖,在△ABC中,AD平分∠BAC , 按如下步驟作圖:
第一步,分別以點(diǎn)A、D為圓心,以大于 AD的長為半徑在AD兩側(cè)作弧,交于兩點(diǎn)M、N;
第二步,連接MN分別交AB、AC于點(diǎn)E、F;
第三步,連接DE、DF .
若BD=6,AF=4,CD=3,則BE的長是( 。.
A.2
B.4
C.6
D.8
【答案】D
【解析】:∵根據(jù)作法可知:MN是線段AD的垂直平分線,
∴AE=DE , AF=DF ,
∴∠EAD=∠EDA ,
∵AD平分∠BAC ,
∴∠BAD=∠CAD ,
∴∠EDA=∠CAD ,
∴DE∥AC ,
同理DF∥AE ,
∴四邊形AEDF是菱形,
∴AE=DE=DF=AF ,
∵AF=4,
∴AE=DE=DF=AF=4,
∵DE∥AC ,
∴ ,
∵BD=6,AE=4,CD=3,
∴ ,
∴BE=8.
故選:D.
【考點(diǎn)精析】本題主要考查了線段垂直平分線的性質(zhì)和平行線分線段成比例的相關(guān)知識點(diǎn),需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等;三條平行線截兩條直線,所得的對應(yīng)線段成比例才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
(1)【發(fā)現(xiàn)證明】
小聰把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖1證明上述結(jié)論.
(2)【類比引申】
如圖2,四邊形ABCD中∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足什么關(guān)系時,仍有EF=BE+FD
(3)【探究應(yīng)用】如圖3,在某公園的同一水平面上,四條通道圍成的ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40( ,米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于點(diǎn)O.
(1)求邊AB的長;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點(diǎn)放在菱形ABCD的頂點(diǎn)A處,繞點(diǎn)A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點(diǎn)E,F(xiàn),連接EF與AC相交于點(diǎn)G. ①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉(zhuǎn)過程中,當(dāng)點(diǎn)E為邊BC的四等分點(diǎn)時(BE>CE),求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點(diǎn),AD⊥AE.
(1)求證:AC2=CDBC;
(2)過E作EG⊥AB,并延長EG至點(diǎn)K,使EK=EB.
①若點(diǎn)H是點(diǎn)D關(guān)于AC的對稱點(diǎn),點(diǎn)F為AC的中點(diǎn),求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B的坐標(biāo)為(3,4),D是OA的中點(diǎn),點(diǎn)E在AB上,當(dāng)△CDE的周長最小時,點(diǎn)E的坐標(biāo)為( 。
A.(3,1)
B.(3, )
C.(3, )
D.(3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以O(shè)(0,0)、A(1,-1)、B(2,0)為頂點(diǎn),構(gòu)造平行四邊形,下列各點(diǎn)中不能作為平行四邊形第四個頂點(diǎn)坐標(biāo)的是( )
A.(3,-1)
B.(-1,-1)
C.(1,1)
D.(-2,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個正方體的展開圖,標(biāo)注了字母a的面是正方體的正面,如果正方體相對兩個面上的整式的值相等,求整式(x+y)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com