【題目】如圖,為平分線,,以的長(zhǎng)為直徑作交于點(diǎn),過(guò)點(diǎn)作于點(diǎn).
(1)求證:是的切線.
(2)若,的長(zhǎng)=_____.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)連接OD,根據(jù)AC為∠BAM的平分線以及OA=OD得到∠MAC=∠ADO,從而得出AE∥OD,結(jié)合DE⊥AM即可解答.
(2)過(guò)點(diǎn)D作DF⊥AB于點(diǎn)F,即可證得DE=DF=6,在Rt△ADF中利用射影定理求得AF,然后利用勾股定理求出AD.
(1)證明:連接OD,
∵AC為∠BAM的平分線,
∴∠BAC=∠MAC,
∵OA=OD,
∴∠BAC=∠ADO,
∴∠MAC=∠ADO
∴AE∥OD,
∵DE⊥AM,
∴OD⊥DE,
∴DE是⊙O的切線;
(2)解:連接BD,過(guò)點(diǎn)D作DF⊥AB于點(diǎn)F,
∵AC為∠BAM平分線,DE⊥AM,
∴DF=DE=6,
∵AB是直徑,,
∴∠ADB=90°,
∴DF2=AFBF,即62=AF(13AF),
∴AF=9或AF=4(舍去)
∴AD=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的函數(shù)解析式為,點(diǎn)是二次函數(shù)的圖象上一點(diǎn),過(guò)點(diǎn)作直線軸,且點(diǎn)的橫坐標(biāo)為,二次函數(shù)的圖象與二次函數(shù)的圖象關(guān)于直線成軸對(duì)稱.
(1)直接寫(xiě)出二次函數(shù)圖象的對(duì)稱軸(用含的代數(shù)式表示)
(2)當(dāng)點(diǎn)落在軸上時(shí),求二次函數(shù)的解析式.
(3)當(dāng)點(diǎn)在軸的右側(cè)時(shí),過(guò)點(diǎn)作射線軸,設(shè)射線與的圖象交于點(diǎn),的圖象在上方的部分記為,的圖象的剩余部分沿翻折得到,由和所組成的圖象記為.
①當(dāng)點(diǎn)的縱坐標(biāo)與橫坐標(biāo)之和為6時(shí),求的值
②當(dāng)時(shí),隨著的增大,圖象所對(duì)應(yīng)函數(shù)的函數(shù)值先減小后增大時(shí),直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察猜想:
(1)如圖1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,點(diǎn)D與點(diǎn)C重合,點(diǎn)E在斜邊AB上,連接DE,且DE=AE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DF,連接EF,則=______,sin∠ADE=________,
探究證明:
(2)在(1)中,如果將點(diǎn)D沿CA方向移動(dòng),使CD=AC,其余條件不變,如圖2,上述結(jié)論是否保持不變?若改變,請(qǐng)求出具體數(shù)值:若不變,請(qǐng)說(shuō)明理由.
拓展延伸
(3)如圖3,在△ABC中,∠ACB=90°,∠CAB=a,點(diǎn)D在邊AC的延長(zhǎng)線上,E是AB上任意一點(diǎn),連接DE.ED=nAE,將線段DE繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)90°至點(diǎn)F,連接EF.求和sin∠ADE的值分別是多少?(請(qǐng)用含有n,a的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意一個(gè)四位正整數(shù)數(shù)m,若其千位與百位上的數(shù)字之和為9,十位與個(gè)位上的數(shù)字之和也為9,那么稱m為“重九數(shù)”,如:1827、3663.將“重九數(shù)”m的千位數(shù)字與十位數(shù)字對(duì)調(diào),百位數(shù)字與個(gè)位數(shù)字對(duì)調(diào),得到一個(gè)新的四位正整數(shù)數(shù)n,如:m=2718,則n=1827,記D(m,n)=m+n.
(1)請(qǐng)寫(xiě)出兩個(gè)四位“重九數(shù)”: , .
(2)求證:對(duì)于任意一個(gè)四位“重九數(shù)”m,其D(m,n)可被101整除.
(3)對(duì)于任意一個(gè)四位“重九數(shù)”m,記f(m,n)=,當(dāng)f(m,n)是一個(gè)完全平方數(shù)時(shí),且滿足m>n,求滿足條件的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,為上一動(dòng)點(diǎn)(與不重合),將沿翻折至,與相交于點(diǎn),與相交于點(diǎn),連接交于,若,則的長(zhǎng)=______,折痕的長(zhǎng)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.事件“在一張紙上隨意畫(huà)兩個(gè)直角三角形,這兩個(gè)直角三角形相似”是確定事件
B.如果一組數(shù)據(jù)為,其平均數(shù)為那么這組數(shù)據(jù)的方差為
C.事件“若的面積是,則它的一邊長(zhǎng)與這邊上的高h的函數(shù)關(guān)系式為”是隨機(jī)事件
D.從一個(gè)裝有個(gè)紅球和個(gè)黑球的袋子中任取一球,取到的是黑球符合如右圖所示的“用頻率估計(jì)概率”的實(shí)驗(yàn)得出的頻率折線圖(如圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將-塊含有角的直角三角板如圖放置,直角頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為,頂點(diǎn)恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿軸正方向平移,當(dāng)頂點(diǎn)恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,已知△ABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=BC.
(2)利用第(1)題的結(jié)論,解決下列問(wèn)題:
①如圖,在四邊形ABCD中,AD∥BC,E、F分別是AB、CD的中點(diǎn),求證:EF∥BC,FE=(AD+BC)
②如圖,在四邊形ABCD中,∠A=90°,AB=3,AD=3,點(diǎn)M,N分別在邊AB,BC上,點(diǎn)E,F分別為MN,DN的中點(diǎn),連接EF,求EF長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn) E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com