【題目】如圖,在矩形ABCD中,E為CD上一點(diǎn),若△ADE沿直線AE翻折,使點(diǎn)D落在BC邊上點(diǎn)D′處.F為AD上一點(diǎn),且DF=CD',EF與BD相交于點(diǎn)G,AD′與BD相交于點(diǎn)H.D′E∥BD,HG=4,則BD=__.
【答案】6+2.
【解析】
由折疊的性質(zhì)得AD′=AD,D′E=DE,∠ADE=∠AD′E=90°,證明△CD′E~△BAD′,得出,得出 ,證明△EDF∽△DAB,得出∠FED=∠ADB,證明四邊形HGED′是矩形,得出∠GED'=90°,HG=ED′=DE=4,設(shè)EC=y,CD′=x,證明△DGE≌△ECD′(AAS),得出DG=CE=y,EG=CD′=HD′=x,同理△BHD′∽△D′CE,得出 ,BH=,BD=BH+GH+DG=y+4+ ,同理△DFE∽△CED′,得出 ,得出x2=4y,由勾股定理得出x2+y2=16,得出y2+4y﹣16=0,解方程即可.
解:∵四邊形ABCD是矩形,
∴∠C=∠ABD′=∠BAD=∠ADC=90°,
由折疊的性質(zhì)得:AD′=AD,D′E=DE,∠ADE=∠AD′E=90°,
∴AD′⊥D′E,
∵D′E∥BD,
∴BD⊥AD′,
∴∠GHD′=∠HD′E=90°,
∴∠ED′C+∠BD′A=90°,
∵∠BAD′+∠BD′A=90°,
∴∠ED′C=∠BAD′,
∵∠C=∠ABD′,
∴△CD′E~△BAD′,
∴,
∵CD′=DF,
∴,
∵∠EDF=∠BAD=90°,
∴△EDF∽△DAB,
∴∠FED=∠ADB,
∵∠ADB+∠BDC=90°,
∴∠FED+∠BDC=90°,
∴∠DGE=90°,
∴∠GHD′=∠HD′E=∠HGE=90°,
∴四邊形HGED′是矩形,
∴∠GED'=90°,HG=ED′=DE=4,
設(shè)EC=y,CD′=x,
∵∠DEG+∠D'EC=∠D'EC+∠CD'E=90°,
∴∠DEG=∠CD'E,
在△DGE和△ECD'中,,
∴△DGE≌△ECD′(AAS),
∴DG=CE=y,EG=CD′=HD′=x,
同理△BHD′∽△D′CE,
∴,
∴,
∴BH=,
∴BD=BH+GH+DG=y+4+,
同理△DFE∽△CED′,
∴,
∴,
∴x2=4y,
∵x2+y2=16,
∴y2+4y﹣16=0,
∴y=﹣2+2,或y=﹣2﹣2(舍棄),
∴BD=﹣2+2+4+4=6+2;
故答案為:6+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】蘇北五市聯(lián)合通過(guò)網(wǎng)絡(luò)投票選出了一批“最有孝心的美少年”.根據(jù)各市的入選結(jié)果制作出如下統(tǒng)計(jì)表,后來(lái)發(fā)現(xiàn),統(tǒng)計(jì)表中前三行的所有數(shù)據(jù)都是正確的,后兩行中有一個(gè)數(shù)據(jù)是錯(cuò)誤的.請(qǐng)回答下列問(wèn)題:
(1)統(tǒng)計(jì)表________,________;
(2)統(tǒng)計(jì)表后三行中哪一個(gè)數(shù)據(jù)是錯(cuò)誤的?該數(shù)據(jù)的正確值是多少?
(3)組委會(huì)決定從來(lái)自宿遷市的4位“最有孝心的美少年”中,任選兩位作為蘇北五市形象代言人,、是宿遷市“最有孝心的美少年”中的兩位,問(wèn)、同時(shí)入選的概率是多少?并請(qǐng)畫(huà)出樹(shù)狀圖或列出表格.
區(qū)域 | 頻數(shù) | 頻率 |
宿遷 | 4 | a |
連云港 | 7 | 0.175 |
淮安 | 0.2 | |
徐州 | 10 | 0.25 |
鹽城 | 12 | 0.275 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線.
(1)求拋物線的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)將拋物線向下平移,得拋物線,使拋物線的頂點(diǎn)落在直線上.
①求拋物線的解析式;
②拋物線與軸的交點(diǎn)為,(點(diǎn)在點(diǎn)的左側(cè)),拋物線的對(duì)稱軸于軸的交點(diǎn)為,點(diǎn)是線段上的一點(diǎn),過(guò)點(diǎn)作直線軸,交拋物線于點(diǎn),點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為,點(diǎn)是線段上一點(diǎn),且,連接,作交軸于點(diǎn),且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行團(tuán)計(jì)劃今年暑假組織一個(gè)老年人團(tuán)去昆明旅游,預(yù)定賓館住宿時(shí),有住宿條件一樣的甲、乙兩家賓館供選擇,其收費(fèi)標(biāo)準(zhǔn)為每人每天120元,并且各自推出不同的優(yōu)惠方案.甲家是35人(含35人)以內(nèi)的按標(biāo)準(zhǔn)收費(fèi),超過(guò)35人的,超出部分按九折收費(fèi);乙家是45人(含45人)以內(nèi)的按標(biāo)準(zhǔn)收費(fèi),超過(guò)45人的,超出部分按八折收費(fèi).設(shè)老年團(tuán)的人數(shù)為.
(1)根據(jù)題意,用含有的式子填寫(xiě)下表:
甲賓館收費(fèi)/元 | 5280 | |||
乙賓館收費(fèi)/元 | 5400 |
(2)當(dāng)老年人團(tuán)的人數(shù)為何值時(shí),在甲、乙兩家賓館的花費(fèi)相同?如果老年人團(tuán)的人數(shù)超過(guò)60人,在哪家賓館住宿比較省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和爸爸周末步行去游泳館游泳,爸爸先出發(fā)了一段時(shí)間后小明才出發(fā),途中小明在離家米處的報(bào)亭休息了一段時(shí)間后繼續(xù)按原來(lái)的速度前往游泳館.爸爸、小明離家的距離(單位:米),單位:米)與小明所走時(shí)間(單位:分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象信息解答下列問(wèn)題:
分別求出爸爸離家的距離和小明到達(dá)報(bào)亭前離家的距離與時(shí)間之間的函數(shù)關(guān)系式;
求小明在報(bào)亭休息了多長(zhǎng)時(shí)間遇到姍姍來(lái)遲的爸爸?
若游泳館離小明家米,請(qǐng)你通過(guò)計(jì)算說(shuō)明誰(shuí)先到達(dá)游泳館?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面內(nèi)的兩條直線l1、l2,點(diǎn)A、B在直線l2上,過(guò)點(diǎn)A、B兩點(diǎn)分別作直線l1的垂線,垂足分別為A1、B1,我們把線段A1B1叫做線段AB在直線l2上的正投影,其長(zhǎng)度可記作T(AB,CD)或T(AB,l2),特別地,線段AC在直線l2上的正投影就是線段A1C,請(qǐng)依據(jù)上述定義解決如下問(wèn)題.
(1)如圖1,在銳角△ABC中,AB=5,T(AC,AB)=3,則T(BC,AB)= ;
(2)如圖2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面積;
(3)如圖3,在鈍角△ABC中,∠A=60°,點(diǎn)D在AB邊上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我們學(xué)習(xí)過(guò)的數(shù)學(xué)教科書(shū)中,有一個(gè)數(shù)學(xué)活動(dòng),其具體操作過(guò)程是:
第一步:對(duì)折矩形紙片,使與重合,得到折痕,把紙片展開(kāi)(如圖①);
第二步:再一次折疊紙片,使點(diǎn)落在上,并使折痕經(jīng)過(guò)點(diǎn),得到折痕,同時(shí)得到線段(如圖②).
如圖②所示建立平面直角坐標(biāo)系,請(qǐng)解答以下問(wèn)題:
(Ⅰ)設(shè)直線的解析式為,求的值;
(Ⅱ)若的延長(zhǎng)線與矩形的邊交于點(diǎn),設(shè)矩形的邊,;
(i)若,,求點(diǎn)的坐標(biāo);
(ii)請(qǐng)直接寫(xiě)出、應(yīng)該滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,以A為圓心,AD為半徑的弧交AB的延長(zhǎng)線于點(diǎn)E,連接BD,若AD=2AB=4,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt⊿ABC中,∠ACB是直角, tan∠B=,BC=16 cm,點(diǎn)D以2cm/s的速度由點(diǎn)A向點(diǎn)B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B即停止,M、N分別是AD、CD的中點(diǎn),連結(jié)MN,設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t
(1)求MN的長(zhǎng);
(2)求點(diǎn)D由點(diǎn)A到點(diǎn)B勻速運(yùn)動(dòng)過(guò)程中,線段MN所掃過(guò)的面積;
(3)若⊿DMN是等腰三角形時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com