【題目】如圖1,△ABC中,CD為△ABC的中線,點E在CD上,且∠AED=∠BCD.
(1)求證:AE=BC.
(2)如圖2,連接BE,若AB=AC=2DE,∠CBE=14°,則∠ACD的度數(shù)為 (直接寫出結(jié)果),
【答案】(1)詳見解析;(2)28°.
【解析】
(1)延長CD到F使DF=CD,連接AF,由CD是△ABC的中線,得到AD=BD,推出△ADF≌△BCD,根據(jù)全等三角形的性質(zhì)得到∠F=∠BCD,BC=AF,由等腰三角形的性質(zhì),利用等量代換即可得到結(jié)論;
(2)根據(jù)DE=AB,CD為△ABC的中線,得DE=AD=DB,∠DEB=∠DBE,可求得∠ABC=∠DEB+14°,并∠DEB=∠DCB+∠CBE,的∠DCB=∠DEB﹣14°,利用AC=AB,得∠ACB=∠ABC=∠DEB+14°,即可得∠ACD=∠ACB﹣∠DCB=28°.
證明:(1)如圖1,延長CD到F,使DF=CD,連接AF,
∵CD為△ABC的中線,
∴AD=BD,且∠ADF=∠BDC,且CD=DF,
∴△ADF≌△BDC(SAS),
∴AF=BC,∠F=∠BCD,
∵∠AED=∠BCD,
∴∠AED=∠F,
∴AE=AF,
∴AE=BC;
(2)
∵DE=AB,CD為△ABC的中線,
∴DE=AD=DB,
∴∠DEB=∠DBE,
∴∠ABC=∠DBE+∠CBE=∠DEB+14°,
∵∠DEB=∠DCB+∠CBE,
∴∠DCB=∠DEB﹣14°,
∵AC=AB,
∴∠ACB=∠ABC=∠DEB+14°
∴∠ACD=∠ACB﹣∠DCB=(∠DEB+14°)-(∠DEB﹣14°)=28°,
故答案為:28°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N再分別以MN為圓心,大于的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法中正確的有________.
①AD是的平分線;②;③點D在AB的中垂線上;④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點分別為點E,F,DF與AC交于點M,DE與BC交于點N.
(1)如圖1,若CE=CF,求證:DE=DF;
(2)如圖2,在∠EDF繞點D旋轉(zhuǎn)的過程中:
①探究三條線段AB,CE,CF之間的數(shù)量關(guān)系,并說明理由;
②若CE=4,CF=2,求DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A=÷(﹣).
(1)化簡A;
(2)當(dāng)x2+y2=13,xy=﹣6時,求A的值;
(3)若|x﹣y|+=0,A的值是否存在,若存在,求出A的值,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線,有以下結(jié)論:①;②;③;④.其中正確的結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),完成下列各題:
將函數(shù)關(guān)系式用配方法化為的形式,并寫出它的頂點坐標(biāo)、對稱軸.
在直角坐標(biāo)系中,畫出它的圖象.
根據(jù)圖象說明:當(dāng)取何值時,隨的增大而增大?
當(dāng)取何值時,?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點D(m,m+8)在第二象限,點B(0,n)在y軸正半軸上,作DA⊥x軸,垂足為A,已知OA比OB的值大2,四邊形AOBD的面積為12.
(1)求m和n的值.
(2)如圖2,C為AO的中點,DC與AB相交于點E,AF⊥BD,垂足為F,求證:AF=DE.
(3)如圖3,點G在射線AD上,且GA=GB,H為GB延長線上一點,作∠HAN交y軸于點N,且∠HAN=∠HBO,求NB﹣HB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017廣東省深圳市)如圖,拋物線經(jīng)過點A(﹣1,0),B(4,0),交y軸于點C;
(1)求拋物線的解析式(用一般式表示);
(2)點D為y軸右側(cè)拋物線上一點,是否存在點D使?若存在請直接給出點D坐標(biāo);若不存在,請說明理由;
(3)將直線BC繞點B順時針旋轉(zhuǎn)45°,與拋物線交于另一點E,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》一書中,用如圖所示的三角形解釋二項式乘方(a+b)n的展開式的各項系數(shù),此三角形稱為“楊輝三角”.根據(jù)“楊輝三角”請計算(a+b)64的展開式中第63項的系數(shù)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com