【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是( )
A. B. C. D.
【答案】D
【解析】
根據(jù)點P在AD、DE、EF、FG、GB上時,△ABP的面積S與時間t的關(guān)系確定函數(shù)圖象.
當(dāng)點P在AD上時,△ABP的底AB不變,高增大,所以△ABP的面積S隨著時
間t的增大而增大;
當(dāng)點P在DE上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;
當(dāng)點P在EF上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小
而減;
當(dāng)點P在FG上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;
當(dāng)點P在GB上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減
小而減;
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在橫線上完成下面的證明,并在括號內(nèi)注明理由.
已知:如圖,∠ABC+∠BGD=180°,∠1=∠2.
求證:EF∥DB.
證明:∵∠ABC+∠BGD=180°,(已知)
∴ .( )
∴∠1=∠3.( )
又∵∠1=∠2,(已知)
∴ .( )
∴EF∥DB.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD為AB邊上的高.點E從點B出發(fā)沿直線BC以2cm/s的速度移動,過點E作BC的垂線交直線CD于點F.
(1)試說明:∠A=∠BCD;
(2)當(dāng)點E運動多長時間時,CF=AB.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某鄉(xiāng)A、B兩村盛產(chǎn)柑橘,A村有柑橘200 噸,B村有柑橘300噸.現(xiàn)將這些柑橘運到C、D兩個冷藏倉庫,已知C倉庫可儲存240 噸,D倉庫可儲存260噸;從A村運往C、D兩處的費用分別為每噸20元和25元,從B村運往C、D兩處的費用分別為每噸15元和18元,設(shè)從A村運往C倉庫的柑橘重量為x噸,A、B兩村運往兩倉庫的柑橘運輸費用分別為yA元和yB元.
(1)求出yA、yB與x之間的函數(shù)關(guān)系式;
yA = ________________________,yB = ________________________.
(2)試討論A、B兩村中,哪個村的運費較少;
(3)考慮到B村的經(jīng)濟承受能力,B村的柑橘運費不得超過4830元.在這種情況下,請問怎樣調(diào)運,才能使兩村運費之和最?求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū),某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:
問題1:單價
該公司早期在甲街區(qū)進行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?
問題2:投放方式
該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放 輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在以點O為原點的數(shù)軸上,點A表示的數(shù)是3,點B在原點的左側(cè),且AB=6AO(我們把數(shù)軸上兩點之間的距離用表示兩點的大寫字母一起標(biāo)記,比如,點A與點B之間的距離記作AB).
(1)B點表示的數(shù)是_______.
(2)若動點P從O點出發(fā),以每秒2個單位長度的速度勻速向左運動,問經(jīng)過幾秒鐘后PA=3PB?并求出此時P點在數(shù)軸上對應(yīng)的數(shù).
(3)若動點M.P.N分別同時從A、O、B出發(fā),勻速向右運動,其速度分別為1個單位長度/秒.2個單位長度/秒.4個單位長度/秒,設(shè)運動時間為t秒,請直接寫出PM.PN.MN中任意兩個相等時的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+b的圖象經(jīng)過點A(﹣2,0),與反比例函數(shù)y=(x>0)的圖象交于B(a,4).
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)設(shè)M(m﹣2,m)是直線AB上一點,過M作MN∥x軸,交反比例函數(shù)y=(x>0)的圖象于點N,若AONM為頂點的四邊形為平行四邊形,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2008年6月1日起,我國實施“限塑令”,開始有償使用環(huán)保購物袋.為了滿足市場需求,某廠家生產(chǎn)兩種款式的布質(zhì)環(huán)保購物袋,每天共生產(chǎn)4500個,兩種購物袋的成本和售價如下表,設(shè)每天生產(chǎn)種購物袋個,每天共獲利元.
成本(元/個) | 售價(元/個) | |
2 | 2.3 | |
3 | 3.5 |
(1)求出關(guān)于的函數(shù)解析式;
(2)如果該廠每天最多投入成本10000元,那么每天最多獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com