【題目】如果關(guān)于x的分式方程-3=有負(fù)分?jǐn)?shù)解,且關(guān)于x的不等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是_________

【答案】9

【解析】,

由①得:x≤2a+4,

由②得:x<-2,

由不等式組的解集為x<-2,得到2a+4≥-2,即a≥-3,

分式方程去分母得:a-3x-3=1-x,

x=

由分式方程-3=有負(fù)分?jǐn)?shù)解,則有a-4<0,所以a<4,

所以-3≤a<4,

a=-3代入整式方程得:-3x-6=1-x,即x=-,符合題意;

a=-2代入整式方程得:-3x-5=1-x,即x=-3,不合題意;

a=-1代入整式方程得:-3x-4=1-x,即x=-,符合題意;

a=0代入整式方程得:-3x-3=1-x,即x=-2,不合題意;

a=1代入整式方程得:-3x-2=1-x,即x=-,符合題意;

a=2代入整式方程得:-3x-1=1-x,即x=-1,不合題意;

a=3代入整式方程得:-3x=1-x,即x=-,符合題意,

∴符合條件的整數(shù)a取值為-3,-1,1,3,之積為9,

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠BAC=90°,AB=AC=2,BC=.點DB點開始運(yùn)動到C點結(jié)束(點DB、C均不重合),DEACE,ADE=45°,當(dāng)△ADE是等腰三角形時,AE的長度為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8.BC=6,點P以每秒1個單位的速度從
A向C運(yùn)動,同時點Q以每秒2個單位的速度從A→B→C方向運(yùn)動,它們到C點后都
停止運(yùn)動,設(shè)點P、Q運(yùn)動的時間為t秒.
(Ⅰ)在運(yùn)動過程中,請你用t表示P、Q兩點間的距離,并求出P、Q兩點間的距離
的最大值;
(Ⅱ)經(jīng)過t秒的運(yùn)動,求△ABC被直線PQ掃過的面積S與時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°.分別以頂點A,B為圓心,大于AB的長為半徑作弧,兩弧在直線AB兩側(cè)分別交于M,N兩點,過M,N作直線交AB于點P,交AC于點D,連結(jié)BD.下列結(jié)論中,錯誤的是( )

A. 直線AB是線段MN的垂直平分線 B. CD=AD

C. BD平分∠ABC D. S△APD=S△BCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如今,網(wǎng)上購物已成為一種新的消費(fèi)時尚,精品書店想購買一種賀年卡在元旦時銷售,在互聯(lián)網(wǎng)上搜索了甲、乙兩家網(wǎng)

店(如圖所示),已知兩家網(wǎng)店的這種賀年卡的質(zhì)量相同,請看圖回答下列問題:

(1)假若精品書店想購買x張賀年卡,那么在甲、乙兩家網(wǎng)店分別需要花多少錢(用含有x的式子表示)?(提示:如需付運(yùn)費(fèi)時運(yùn)費(fèi)只需付一次,即8元)

(2)精品書店打算購買300張賀年卡,選擇哪家網(wǎng)店更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,P是BC中點,∠EPF=90°,給出四個結(jié)論:①∠B=∠BAP;②AE=CF;③PE=PF;④S四邊形AEPFS△ABC.其中成立的有_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:

以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知ABCD,點E、F分別是AB、CD上的點,點P是兩平行線之間的一點,設(shè)∠AEP=α,PFC=β,在圖①中,過點E作射線EHCD于點N,作射線FI,延長PFG,使得PE、FG分別平分∠AEH、DFl,得到圖②

(1)在圖①中,過點PPMAB,當(dāng)α=20°,β=50°時,∠EPM=   度,∠EPF=   度;

(2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);

(3)在圖②中,當(dāng)FIEH時,請直接寫出αβ的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一根繩子對折成線段AB,從點P處把繩子剪斷,已知APBP=2:3,若剪斷后的各段繩子中最長的一段為60 cm,求繩子的原長.

查看答案和解析>>

同步練習(xí)冊答案