【題目】

在四邊形ABCD中,對角線AC、BD相交于點O,∠ADB=∠CBD,添加下列一個條件后,仍不能判定四邊形ABCD是平行四邊形的是( )

A∠ABD=∠CDB

B∠DAB=∠BCD

C∠ABC=∠CDA

D∠DAC=∠BCA

【答案】

D

【解析】

∠ADB=∠CBD可得到AD∥BC∴A、∠ABD=∠CDB能得到AB∥CD,所以能判定四邊形ABCD是平行四邊形;B、利用三角形的內(nèi)角和定理能進(jìn)一步得到∠ABD=∠CDB,從而能得到AB∥CD,所以能判定四邊形ABCD是平行四邊形;C、能進(jìn)一步得到∠CDB=∠ABD,從而能得到AB∥CD,所以能判定四邊形ABCD是平行四邊形;D、不能進(jìn)一步得到AB∥CD,所以不能判定四邊形ABCD是平行四邊形,
故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位欲從內(nèi)部招聘管理人員一名,對甲、乙、丙三名候選人進(jìn)行了筆試和面試兩項測試,三人的測試成績?nèi)缦卤硭荆?/span>

根據(jù)錄用程序,組織200名職工對三人利用投票推薦的方式進(jìn)行民主評議,三人得票率(沒有棄權(quán)票,每位職工只能推薦1人)如上圖所示,每得一票記作1分.

(l)請算出三人的民主評議得分;

(2)如果根據(jù)三項測試的平均成績確定錄用人選,那么誰將被錄用(精確到 0.01 )?

(3)根據(jù)實際需要,單位將筆試、面試、民主評議三項測試得分按 4 : 3 : 3 的比例確定個人成績,那么誰將被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進(jìn)A,B兩種花草,第一次分別購進(jìn)A,B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購進(jìn)A,B兩種花草12棵和5棵,共花費(fèi)265元(兩次購進(jìn)的A、B兩種花草價格均分別相同).
(1)A,B兩種花草每棵的價格分別是多少元?
(2)若購買A,B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你設(shè)計一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個橫、縱坐標(biāo)為整數(shù)的點,其順序按圖中“→”方向排列,從原點開始依次為(0,0),(1,0),(1,1),(0,1),(0,2),(12),(22),(2,1),(2,0)(3,0)…按此規(guī)律第200個點的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,∠A120°,BD平分∠ABC

1)若BDCD,求∠C的度數(shù);

2)射線APAB位置開始,以每秒10°的速度繞點A逆時針旋轉(zhuǎn),6秒后APBD有何種位置關(guān)系?并說明理由.

3)在(2)的條件下,AP旋轉(zhuǎn)一圈回到AB處時停止運(yùn)動,若射線AP與直線BD相交所成的角中較小的角為x°,當(dāng)10x20,則旋轉(zhuǎn)時間t(單位:秒)的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,定點A(﹣2,0),動點B在直線y=x上運(yùn)動,當(dāng)線段AB最短時,點B的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0)、B(4,1)兩點,且與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖(1),設(shè)拋物線與x軸的另一個交點為D,在拋物線的對稱軸上找一點H,使△CDH的周長最小,求出H點的坐標(biāo)并求出最小周長值.

(3)如圖(2),連接AC,E為線段AC上任意一點(不與A、C重合),經(jīng)過A、E、O三點的圓交直線AB于點F,當(dāng)△OEF的面積取得最小值時,求面積的最小值及E點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式 成立的一對有理數(shù),共生有理數(shù)對,記為(,),如:數(shù)對(,),(,),都是共生有理數(shù)對

1)數(shù)對(,),(,)中是共生有理數(shù)對嗎?說明理由.

2)若()是共生有理數(shù)對,則()是共生有理數(shù)對嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-5、-2、1,三個數(shù)按照給出順序構(gòu)造一組無限循環(huán)數(shù)據(jù)。

(1)求第2018個數(shù)是多少?

(2)求前50個數(shù)的和是多少?

(3)試用含(為正整數(shù))的式子表示出數(shù)“-2所在的位置數(shù);

(4)請你算出第,,個這三個數(shù)的和?

查看答案和解析>>

同步練習(xí)冊答案