【題目】如圖△ABC中,∠A=96°,延長BCD,∠ABC∠ACD的平分線相交于點(diǎn)A1∠A1BC∠A1CD的平分線相交于點(diǎn)A2,依此類推,∠A4BC∠A4CD的平分線相交于點(diǎn)A5,∠A5的度數(shù)為(

A. 19.2° B. C. D.

【答案】D

【解析】

利用角平分線的定義和三角形內(nèi)角與外角的性質(zhì)計(jì)算.

∵∠ABC與∠ACD的平分線相交于點(diǎn)A1,

∴∠ABC=2A1BC,A1CD=ACD

根據(jù)三角形的外角的性質(zhì)得,∠A1CD=ABC+∠A)=(2A1BC+∠A)=A1BC+A,

根據(jù)三角形的外角的性質(zhì)得,∠A1CD=A1BC+∠A1,

∴∠A1=A

同理:∠A2=A1,

∴∠A2=A1=×A=A

同理:∠A3=A

A4=A,

A5=A=×96°=3°,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠B=60°,點(diǎn)M從點(diǎn)B出發(fā)沿射線BC方向,在射線BC上運(yùn)動(dòng).在點(diǎn)M運(yùn)動(dòng)的過程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊△AMN,連結(jié)CN.

(1)當(dāng)∠BAM=   °時(shí),AB=2BM;

(2)請(qǐng)?zhí)砑右粋(gè)條件:   ,使得△ABC為等邊三角形;

①如圖1,當(dāng)△ABC為等邊三角形時(shí),求證:BM=CN;

②如圖2,當(dāng)點(diǎn)M運(yùn)動(dòng)到線段BC之外時(shí),其它條件不變,①中結(jié)論BM=CN還成立嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賽季甲、乙兩名籃球運(yùn)動(dòng)員12場比賽得分情況用圖表示如下:

對(duì)這兩名運(yùn)動(dòng)員的成績進(jìn)行比較,下列四個(gè)結(jié)論中,不正確的是(

A. 甲運(yùn)動(dòng)員得分的極差大于乙運(yùn)動(dòng)員得分的極差

B. 甲運(yùn)動(dòng)員得分的中位數(shù)大于乙運(yùn)動(dòng)員得分的中位數(shù)

C. 甲運(yùn)動(dòng)員得分的平均數(shù)大于乙運(yùn)動(dòng)員得分的平均數(shù)

D. 甲運(yùn)動(dòng)員的成績比乙運(yùn)動(dòng)員的成績穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=kx2﹣7x﹣7的圖象和x軸有交點(diǎn),則k的取值范圍是(
A.k>﹣
B.k≥﹣ 且k≠0
C.k≥﹣
D.k>﹣ 且k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E在邊BC,如果點(diǎn)F是邊AD上的點(diǎn),那么CDFABE不一定全等的條件是(  )

A. DF=BE B. AF=CE

C. CF=AE D. CFAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)條件畫圖,并回答問題

(1)畫一個(gè)銳角△ABC(三邊均不相等);

(2)畫出BC邊上的中線AE和高AD;

(3)寫出所有以AD為高的三角形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在筆直的公路上行駛,兩次拐彎后,仍在原來的方向上平行前進(jìn),那么這兩次拐彎的角度是( )

A. 第一次向右拐40, 第二次向左拐140

B. 第一次向左拐40, 第二次向右拐40

C. 第一次向左拐40, 第二次向左拐140

D. 第一次向右拐40, 第二次向右拐40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一條長為2012個(gè)單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A﹣B﹣C﹣D﹣A﹣…的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是(  )

A. (1,﹣1) B. (﹣1,1) C. (﹣1,﹣2) D. (1,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與直線y= x﹣3交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,點(diǎn)B坐標(biāo)為(﹣4,﹣5),點(diǎn)P為y軸左側(cè)的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,交AB于點(diǎn)D.

(1)求拋物線的解析式;
(2)以O(shè),A,P,D為頂點(diǎn)的平行四邊形是否存在?如存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到直線AB下方某一處時(shí),過點(diǎn)P作PM⊥AB,垂足為M,連接PA使△PAM為等腰直角三角形,請(qǐng)直接寫出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案