【題目】如圖,拋物線y=x2+bx+c與直線y= x﹣3交于A、B兩點,其中點A在y軸上,點B坐標(biāo)為(﹣4,﹣5),點P為y軸左側(cè)的拋物線上一動點,過點P作PC⊥x軸于點C,交AB于點D.

(1)求拋物線的解析式;
(2)以O(shè),A,P,D為頂點的平行四邊形是否存在?如存在,求點P的坐標(biāo);若不存在,說明理由.
(3)當(dāng)點P運動到直線AB下方某一處時,過點P作PM⊥AB,垂足為M,連接PA使△PAM為等腰直角三角形,請直接寫出此時點P的坐標(biāo).

【答案】
(1)

解:∵直線y= x﹣3交于A、B兩點,其中點A在y軸上,

∴A(0,﹣3),

∵B(﹣4,﹣5),

,

,

∴拋物線解析式為y=x2+ x﹣3,


(2)

解:存在,

設(shè)P(m,m2+ m﹣3),(m<0),

∴D(m, m﹣3),

∴PD=|m2+4m|

∵PD∥AO,

∴當(dāng)PD=OA=3,故存在以O(shè),A,P,D為頂點的平行四邊形,

∴|m2+4m|=3,

①當(dāng)m2+4m=3時,

∴m1=﹣2﹣ ,m2=﹣2+ (舍),

∴m2+ m﹣3=﹣1﹣ ,

∴P(﹣2﹣ ,﹣1﹣ ),

②當(dāng)m2+4m=﹣3時,

∴m1=﹣1,m2=﹣3,

(i)m1=﹣1,

∴m2+ m﹣3=﹣

∴P(﹣1,﹣ ),

(ii)m2=﹣3,

∴m2+ m﹣3=﹣ ,

∴P(﹣3,﹣ ),

∴點P的坐標(biāo)為(﹣2﹣ ,﹣1﹣ ),(﹣1,﹣ ),(﹣3,﹣ ).


(3)

解:方法一,如圖,

∵△PAM為等腰直角三角形,

∴∠BAP=45°,

∵直線AP可以看做是直線AB繞點A逆時針旋轉(zhuǎn)45°所得,

設(shè)直線AP解析式為y=kx﹣3,

∵直線AB解析式為y= x﹣3,

∴k= =3,

∴直線AP解析式為y=3x﹣3,

聯(lián)立 ,

∴x1=0(舍)x2=﹣

當(dāng)x=﹣ 時,y=﹣ ,

∴P(﹣ ,﹣ ).

方法二:如圖,

∵直線AB解析式為y= x﹣3,

∴直線AB與x軸的交點坐標(biāo)為E(6,0),

過點A作AF⊥AB交x軸于點F,

∵A(0,﹣3),

∴直線AF解析式為y=﹣2x﹣3,

∴直線AF與x軸的交點為F(﹣ ,0),

∴AE=3 ,AF= ,

過點A作∠EAF的角平分線交x軸于點G,與拋物線相較于點P,過點P作PM⊥AB,

∴∠EAG=45°,

∴∠BAP=45°,

即:△PAM為等腰直角三角形.

設(shè)點G(m,0),

∴EG=6﹣m.FG=m+ ,

根據(jù)角平分線定理得, ,

,

∴m=1,

∴G(1,0),

∴直線AG解析式為y=3x﹣3①,

∵拋物線解析式為y=x2+ x﹣3②,

聯(lián)立①②得,x=0(舍)或x=﹣

∴y=﹣ ,

∴P(﹣ ,﹣ ).


【解析】(1)先確定出點A坐標(biāo),然后用待定系數(shù)法求拋物線解析式;(2)先確定出PD=|m2+4m|,當(dāng)PD=OA=3,故存在以O(shè),A,P,D為頂點的平行四邊形,得到|m2+4m|=3,分兩種情況進行討論計算即可;(3)由△PAM為等腰直角三角形,得到∠BAP=45°,從而求出直線AP的解析式,最后求出直線AP和拋物線的交點坐標(biāo)即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠A=96°,延長BCD,∠ABC∠ACD的平分線相交于點A1∠A1BC∠A1CD的平分線相交于點A2,依此類推,∠A4BC∠A4CD的平分線相交于點A5,∠A5的度數(shù)為(

A. 19.2° B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年是一個讓人記憶猶新的年份,霧霾天氣持續(xù)籠罩我國大部分地區(qū),口罩市場出現(xiàn)熱銷某旗艦網(wǎng)店用8000元購進甲、乙兩種型號的口罩銷售完后共獲利2800元,進價和售價如下表:

品名

價格

甲型口罩

乙型口罩

進價元/袋

20

25

售價元/袋

26

35

1求該網(wǎng)店購進甲、乙兩種型號口罩各多少袋?

2該網(wǎng)店第二次以原價購進甲、乙兩種型號口罩購進乙種型號口罩袋數(shù)不變,而購進甲種型號口罩袋數(shù)是第一次的2倍甲種口罩按原售價出售而乙種口罩讓利銷售若兩種型號的口罩都售完,要使第二次銷售活動獲利不少于3680元,乙種型號的口罩最低售價為每袋多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,DE平分ADC交AB于點E,BF平分ABC,交CD于點F.

(1)、求證:DE=BF;(2)、連接EF,寫出圖中所有的全等三角形.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AC上一點,OB是一條射線,OD平分∠AOB,OE∠BOC內(nèi)部,∠BOE∠EOC,∠DOE70°,求∠EOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,廣宇購物中心設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:顧客購物滿20元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當(dāng)轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)的獎品,下表是活動進行中的一組統(tǒng)計數(shù)據(jù).

轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n

100

200

400

500

1000

落在“牙膏”區(qū)域的次數(shù)m

32

58

121

149

300

落在“牙膏”區(qū)域的頻率

0.3025

(1)計算并完成上面的表格;

(2)請估計,當(dāng)n很大時,頻率將會接近多少?

(3)假如你去轉(zhuǎn)動該轉(zhuǎn)盤一次,你獲得牙膏的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了六次測試,測試成績?nèi)绫?/span>:

選手

選拔成績/環(huán)

中位數(shù)

平均數(shù)

10

9

8

8

10

9

10

10

8

10

7

9

(1)把表中所空各項數(shù)據(jù)填寫完整;

(2)分別計算甲、乙六次測試成績的方差;

(3)根據(jù)(1),(2)計算的結(jié)果,你認為推薦誰參加省比賽更合適?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

(1)請寫出△ABC各點的坐標(biāo)

(2)若把△ABC向上平移2個單位,再向左平移1個單位得到△A′B′C′,寫出 A′、B′、C′的坐標(biāo),并在圖中畫出平移后圖形

(3)求出三角形ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=11,∠BAC=120°AD△ABC的中線,AE∠BAD的角平分線,DF∥ABAE的延長線于點F,則DF的長為

查看答案和解析>>

同步練習(xí)冊答案