【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,過點(diǎn)(x1 , 0),﹣3<x1<﹣2,對稱軸為直線x=﹣1.給出四個(gè)結(jié)論:①abc>0;②2a+b=0;③b2>4ac;④3b+2c>0,其中正確的結(jié)論有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】B
【解析】解:①由拋物線的開口向下知a<0,與y軸的交點(diǎn)為在y軸的正半軸上, ∴c>0,對稱軸為x=﹣ =﹣1,得2a=b,
∴a、b同號,即b<0,
∴abc>0;
故本選項(xiàng)正確;②∵對稱軸為x=﹣ =﹣1,得2a=b,
∴2a﹣b=0;
故本選項(xiàng)錯(cuò)誤;③從圖象知,該函數(shù)與x軸有兩個(gè)不同的交點(diǎn),所以根的判別式△=b2﹣4ac>0,即b2>4ac;
故本選項(xiàng)正確;④∵﹣3<x1<﹣2,
∴根據(jù)二次函數(shù)圖象的對稱性,知當(dāng)x=1時(shí),y<0;
又由①知,2a=b,
∴a+b+c<0;
b+b+c<0,
即3b+2c<0;
故本選項(xiàng)錯(cuò)誤.
綜上所述,①③共有2個(gè)正確的.
故選B.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識點(diǎn),需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園手機(jī)現(xiàn)象越來越受到社會的關(guān)注,記者張麗利用周末時(shí)間隨機(jī)調(diào)查了某校若干名家長對中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖信息完成下列問題:

(1)這次一共隨機(jī)抽查了多少個(gè)學(xué)生家長進(jìn)行調(diào)查;

(2)請將條形圖補(bǔ)充完整;在扇形統(tǒng)計(jì)圖中表示贊成的圓心角等于多少度;

(3)如果某校有3000名中學(xué)生家長,持反對態(tài)度的學(xué)生家長大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=﹣的圖象交于A、B兩點(diǎn),A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣2.求:

(1)一次函數(shù)的表達(dá)式;

(2)AOB的面積;

(3)根據(jù)圖象,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個(gè)問題:探究函數(shù)y=﹣ +|x|的圖象與性質(zhì). 小軍根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=﹣ +|x|的圖象與性質(zhì)進(jìn)行了探究.
下面是小軍的探究過程,請補(bǔ)充完整:
(1)函數(shù)y=﹣ +|x|的自變量x的取值范圍是
(2)表是y與x的幾組對應(yīng)值

x

﹣2

﹣1.9

﹣1.5

﹣1

﹣0.5

0

1

2

3

4

y

2

1.60

0.80

0

﹣0.72

﹣1.41

﹣0.37

0

0.76

1.55

在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(3)觀察圖象,函數(shù)的最小值是;
(4)進(jìn)一步探究,結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì)(函數(shù)最小值除外):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC與△A′B′C′中,有下列條件:(1) ,(2) ;(3)∠A=∠A′;(4)∠C=∠C′,如果從中任取兩個(gè)條件組成一組,那么能判斷△ABC∽△A′B′C′的共有(
A.1組
B.2組
C.3組
D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題情境】

如圖1,四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

【探究展示】

1)證明:AM=AD+MC;

2AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.

【拓展延伸】

3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由同樣大小的空心圓圈按照一定規(guī)律所組成的,其中圖中一共有7個(gè)空心圓圈;圖中一共有11個(gè)空心圓圈;圖中一共有15個(gè)空心圓圈;

一共應(yīng)有______個(gè)空心圓圈.

按此規(guī)律排列下去,猜想圖中一共有多少個(gè)空心圓圈?用含n的代數(shù)式表示不用說理

是否存在圖中一共有2018個(gè)空心圓圈?若存在,求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,BAC=120°,DE是AC的垂直平分線,DE=1cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器經(jīng)營業(yè)主兩次購進(jìn)一批同種型號的掛式空調(diào)和電風(fēng)扇,第一次購進(jìn)8臺空調(diào)和20臺電風(fēng)扇;第二次購進(jìn)10臺空調(diào)和30臺電風(fēng)扇.
若第一次用資金17400元,第二次用資金22500元,求掛式空調(diào)和電風(fēng)扇每臺的采購價(jià)各是多少元?
的條件下,若該業(yè)主計(jì)劃再購進(jìn)這兩種電器70臺,而可用于購買這兩種電器的資金不超過30000元,問該經(jīng)營業(yè)主最多可再購進(jìn)空調(diào)多少臺?

查看答案和解析>>

同步練習(xí)冊答案