【題目】為了綠化環(huán)境,某中學八年級(3班)同學都積極參加了植樹活動,下面是今年3月份該班同學植樹情況的扇形統(tǒng)計圖和不完整的條形統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖中的信息解答下列問題.

1)植樹3株的人數(shù)為

2)扇形統(tǒng)計圖中植樹為1株的扇形圓心角的度數(shù)為 ;

3)該班同學植樹株數(shù)的中位數(shù)是

4)小明以下方法計算出該班同學平均植樹的株數(shù)是:(1+2+3+4+5÷53(株),根據(jù)你所學的統(tǒng)計知識

判斷小明的計算是否正確,若不正確,請寫出正確的算式,并計算出結果

【答案】112;(272°;(32;(4)小明的計算不正確,2.4

【解析】

1)根據(jù)植樹2株的人數(shù)及其所占的百分比計算出總人數(shù),然后分別減去植樹1株,2株,4株,5株的人數(shù)即可得到植樹3株的人數(shù);

2)用360°乘以植樹1株的人數(shù)所占的百分比即可得;

3)根據(jù)中位數(shù)的定義可先計算植樹的總人數(shù),然后寫出即可;

4)根據(jù)平均數(shù)的定義判斷計算即可.

解:(1)植樹3株的人數(shù)為:20÷40%10206212;

2)扇形統(tǒng)計圖中植樹為1株的扇形圓心角的度數(shù)為:360°×72°;

3)植樹的總人數(shù)為:20÷40%50

∴該班同學植樹株數(shù)的中位數(shù)是2;

4)小明的計算不正確,

正確的計算為:2.4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

⑴請畫出△ABC關于y軸對稱的△A’B’C’(其中A’,B’,C’分別是A,B,C的對應點,不寫畫法);

⑵直接寫出A’,B’,C’三點的坐標:A’ ( ),B’( ),C’( );

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD,對角線AC,BD相較于點O,要使ABCD為矩形,需添加下列的一個條件是  

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒,底面為矩形EFGH,如圖2.設小正方形的邊長為x厘米.

(1)當矩形紙板ABCD的一邊長為90厘米時,求紙盒的側面積的最大值;
(2)當EH:EF=7:2,且側面積與底面積之比為9:7時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:小明熱愛數(shù)學,在課外書上看到了一個有趣的定理﹣﹣“中線長定理”:三角形兩邊的平方和等于第三邊的一半與第三邊上的中線的平方和的兩倍.如圖1,在△ABC中,點D為BC的中點,根據(jù)“中線長定理”,可得:
AB2+AC2=2AD2+2BD2 . 小明嘗試對它進行證明,部分過程如下:
解:過點A作AE⊥BC于點E,如圖2,在Rt△ABE中,AB2=AE2+BE2
同理可得:AC2=AE2+CE2 , AD2=AE2+DE2 ,
為證明的方便,不妨設BD=CD=x,DE=y,
∴AB2+AC2=AE2+BE2+AE2+CE2=…
(1)請你完成小明剩余的證明過程;
理解運用:

(2)①在△ABC中,點D為BC的中點,AB=6,AC=4,BC=8,則AD=
②如圖3,⊙O的半徑為6,點A在圓內,且OA=2 ,點B和點C在⊙O上,且∠BAC=90°,點E、F分別為AO、BC的中點,則EF的長為
拓展延伸:

(3)小明解決上述問題后,聯(lián)想到《能力訓練》上的題目:如圖4,已知⊙O的半徑為5 ,以A(﹣3,4)為直角頂點的△ABC的另兩個頂點B,C都在⊙O上,D為BC的中點,求AD長的最大值.
請你利用上面的方法和結論,求出AD長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線y=﹣x+6y軸于點A,與x軸交于點D,直線ABx軸于點BAOB沿直線AB折疊,點O恰好落在直線AD上的點C處.

1)求點B的坐標;

2)如圖2,直線AB上的兩點F、G,DFG是以FG為斜邊的等腰直角三角形,求點G的坐標;

3)如圖3,點P是直線AB上一點,點Q是直線AD上一點,且PQ均在第四象限,點Ex軸上一點,若四邊形PQDE為菱形,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解“課程選修”的情況,對報名參加“藝術鑒賞”、“科技制作”、“數(shù)學思維”、“閱讀寫作”這四個選修項目的學生(每人限報一項)進行抽樣調查.下面是根據(jù)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下面的問題:

(1)此次共調查了 名學生,型統(tǒng)計圖中“藝術鑒賞”部分的圓心角是 度.

(2)請把這個條形統(tǒng)計圖補充完整.

(3)現(xiàn)該校共有800名學生報名參加這四個選修項目,請你估計其中有多少名學生選修“科技制作”項目.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了增強學生的身體素質,西南大學附中七年級學生在每天晚自習之后進行夜跑.在學期末的體育考試中,七年級的同學們表現(xiàn)出很好的體育素養(yǎng),并取得了良好的體育成績.為了了解七年級學生的體育考試情況,小明抽取了部分同學的體育考試成績進行分析,體育成績優(yōu)、良、中、差分別記為并繪制了如下兩幅不完整的統(tǒng)計表:

1)本次調查共調查了 名學生,并補全條形統(tǒng)計圖;

2)扇形統(tǒng)計圖中類所對應的扇形圓心角的度數(shù)是 度;

3)若七年級人數(shù)為人,請你估計體育成績優(yōu)、良的總人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關人員分別到這兩間工廠了解情況,獲得如下信息:
信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品?

查看答案和解析>>

同步練習冊答案