【題目】某商家經(jīng)銷一種綠茶,用于裝修門面已投資3000元.已知綠茶每千克成本50元,經(jīng)研究發(fā)現(xiàn)銷量ykg)隨銷售單價x(元/kg)的變化而變化,具體變化規(guī)律如表所示:

銷售單價x(元/kg

70

75

80

85

90

月銷售量ykg

100

90

80

70

60

設(shè)該綠茶的月銷售利潤為w(元)(銷售利潤=單價×銷售量﹣成本)

(1)請根據(jù)上表,寫出yx之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);

(2)求wx之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍),并求出x為何值時,w的值最大?

(3)若在第一個月里,按使w獲得最大值的銷售單價進行銷售后,在第二個月里受物價部門干預(yù),銷售單價不得高于80元,要想在全部收回裝修投資的基礎(chǔ)上使第二個月的利潤至少達到1700元,那么第二個月時里應(yīng)該確定銷售單價在什么范圍內(nèi)?

【答案】(1)y=﹣2x+240;(2)w=﹣2x2+340x﹣12000,x=85時,w最大=2450;(3)當銷售單價為75≤x≤80元時,在全部收回投資的基礎(chǔ)上使第二個月的利潤不低于1700元.

【解析】

1)設(shè)y=kx+b,待定系數(shù)法求解即可得;
(2)根據(jù):總利潤=每千克利潤×銷售量列出函數(shù)關(guān)系式,配方可得其最值情況;
(3)由(2)知,第二個月利潤需達到1700+550W=2250才能滿足題目條件,解方程可得x的值,根據(jù)二次函數(shù)性質(zhì)可得x的取值范圍.

(1)將(70,100),(75,90)代入上式,

得:

解得:,

y=﹣2x+240,

(2)w=(x﹣50)y

=(x﹣50)(﹣2x+240)

=﹣2x2+340x﹣12000

=﹣2(x﹣85)2+2450,

x=85時,w最大=2450;

(3)由(2)知,第1個月還有3000﹣2450=550元的投資成本沒有收回.

則要想在全部收投資的基礎(chǔ)上使第二個月的利潤達到1700元,

w=2250才可以,

可得方程:﹣2(x﹣85)2+2450=2250

解得:x1=75,x2=95

根據(jù)題意x2=95不合題意,應(yīng)舍去,

x=80時,y=2400,

﹣2<0,

∴當x<85時,wx的增大而增大,

w≥2250,且銷售單價不高于80時,75≤x≤80.

答:當銷售單價為75≤x≤80元時,在全部收回投資的基礎(chǔ)上使第二個月的利潤不低于1700元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,反比例函數(shù)y=(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是直角三角形ABC斜邊上的中線,AEADCB延長線于E則圖中一定相似的三角形是(  

A. AED與△ACB B. AEB與△ACD C. BAE與△ACE D. AEC與△DAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點F、C⊙O上且, 連接AC、AF,過點CCD⊥AFAF的延長線于點D.

(1)求證:CD⊙O的切線;

(2), CD=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線形拱橋,當拱頂高離水面2m時,水面寬4m,水面下降2.5m,水面寬度增加( 。

A. 1 m B. 2 m C. 3 m D. 6 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B的坐標分別為(-2,3)和(1,3),拋物線y=ax2+bx+ca0)的 頂點在線段AB上運動時,形狀保持不變,且與x軸交于C,D兩點(CD的左側(cè)),給出下列結(jié)論:①c3;②當x<-3時,yx的增大而增大;③若點D的橫坐標最大值為5,則點C的橫坐標最小值為-5④當四邊形ACDB為平行四邊形時,a.其中正確的是(

A. ②④ B. ②③ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比函數(shù)的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結(jié)AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為(

A. B. 1 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】吳京同學根據(jù)學習函數(shù)的經(jīng)驗,對一個新函數(shù)的圖象和性質(zhì)進行了如下探究,請幫他把探究過程補充完整.

1)該函數(shù)的自變量的取值范圍是______

2)列表:

0

1

2

3

4

5

6

表中________,_______

3)描點、連線

在下面的格點圖中,建立適當?shù)钠矫嬷苯亲鴺讼?/span>中,描出上表中各對對應(yīng)值為坐標的點(其中為橫坐標,為縱坐標),并根據(jù)描出的點畫出該函數(shù)的圖象:

4)觀察所畫出的函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì):

_______________________________________;

_______________________________________

5)函數(shù)與直線的交點有2個,那么的取值范圍_________

查看答案和解析>>

同步練習冊答案