【題目】如圖,△ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,D作BA,BC的平行線交于點E,且DE交AC于點O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.
【答案】
(1)證明:∵DE∥BC,CE∥AB,
∴四邊形DBCE是平行四邊形.
∴CE=BD,
又∵CD是邊AB上的中線,
∴BD=AD,
∴CE=DA,
又∵CE∥DA,
∴四邊形ADCE是平行四邊形.
∵∠BCA=90°,CD是斜邊AB上的中線,
∴AD=CD,
∴四邊形ADCE是菱形;
(2)解:過點C作CF⊥AB于點F,
由(1)可知,BC=DE,
設BC=x,則AC=2x,
在Rt△ABC中,AB= = x.
∵ ABCF= ACBC,
∴CF= = x.
∵CD= AB= x,
∴sin∠CDB= = .
【解析】(1)由DE∥BC,CE∥AB,可證得四邊形DBCE是平行四邊形,又由△ABC中,∠BCA=90°,CD是邊AB上的中線,根據直角三角形斜邊的中線等于斜邊的一半,可得CD=AD=BD=CE,然后由CE∥AB,證得四邊形ADCE平行四邊形的性質,繼而證得四邊形ADCE是菱形;(2)首先過點C作CF⊥AB于點F,由(1)可知,BC=DE,設BC=x,則AC=2x,然后由勾股定理求得AB,再由三角形的面積,求得CF的長,由勾股定理即可求得CD的長,繼而求得答案.
【考點精析】掌握勾股定理的概念是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:①b2﹣4ac<0;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③2a+b=0;④當y>0時,x的取值范圍是﹣1<x<3;⑤當x>0時,y隨x增大而減。渲薪Y論正確的個數是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了解學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機調查了若干名學生,根據調查數據進行整理,繪制了如下的不完整統(tǒng)計圖.
請你根據以上的信息,回答下列問題:
(1)本次共調查了名學生,其中最喜愛戲曲的有人;在扇形統(tǒng)計圖中,最喜愛體育的對應扇形的圓心角大小是 .
(2)根據以上統(tǒng)計分析,估計該校2000名學生中最喜愛新聞的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,O為AC中點,EF過O點且EF⊥AC分別交DC于F,交AB于E,點G是AE中點且∠AOG=30°,則下列結論正確的個數為( ) ⑴DC=3OG;(2)OG= BC;(3)△OGE是等邊三角形;(4)S△AOE= SABCD .
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設點M運動時間為x(s),△AMN的面積為y(cm2),則y關于x的函數圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+(m﹣1)x+m(m>1)與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)點D和點C關于拋物線的對稱軸對稱,點你F在直線AD上方的拋物線上,FG⊥AD于G,FH∥x軸交直線AD于H,求△FGH的周長的最大值;
(3)點M是拋物線的頂點,直線l垂直于直線AM,與坐標軸交于P、Q兩點,點R在拋物線的對稱軸上,使得△PQR是以PQ為斜邊的等腰直角三角形,求直線l的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA= ,求BH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.
(1)求拋物線的函數解析式;
(2)求△ABC的面積;
(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com