【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EFMN,小聰在河岸MN上點A處用測角儀測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學(xué)測得CD=10米.請根據(jù)這些數(shù)據(jù)求出河的寬度.(結(jié)果保留根號)

【答案】30+10)米

【解析】

如圖作BHEF,CKMN,垂足分別為H、K,則四邊形BHCK是矩形,設(shè)CK=HB=x,根據(jù)tan30°=列出方程即可解決問題.

解:如圖作BHEF,CKMN,垂足分別為HK,則四邊形BHCK是矩形,

設(shè)CK=HB=x,
∵∠CKA=90°,∠CAK=45°,
∴∠CAK=ACK=45°,
AK=CK=xBK=HC=AK-AB=x-30,
HD=x-30+10=x-20
RtBHD中,∵∠BHD=90°,∠HBD=30°,
tan30°=

解得x=30+10
∴河的寬度為(30+10)米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點E在正方形ABCD的邊AB上,以BE為邊向正方形ABCD外部作正方形BEFG,連接DF,M、N分別是DC、DF的中點,連接MN.AB=7,BE=5,則MN=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形紙片ABC中,AB3,AC4D為斜邊BC的中點,第1次將紙片折疊,使點A與點D重合,折痕與AD交于點P1;設(shè)P1D的中點為D1,第2次將紙片折疊,使點A與點D1重合,折痕與AD交于點P2;設(shè)P2D1的中點為D2,第3次將紙片折疊,使點A與點D2重合,折痕與AD交于點P3;設(shè)Pn1Dn2的中點為Dn1,第n次將紙片折疊,使點A與點Dn1重合,折痕與AD交于點Pnn2),則AP2019的長為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組由3名男生和1名女生組成,在一次合作學(xué)習(xí)后,開始進行成果展示.

1)如果隨機抽取1名同學(xué)單獨展示,那么女生展示的概率為 ;

2)如果隨機抽取2名同學(xué)共同展示,求同為男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF

1)求證:OF∥BC;

2)求證:△AFO≌△CEB;

3)若EB=5cm,CD=cm,設(shè)OE=x,求x值及陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是 ( 。

A. B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸, 軸分別交于點A、B,拋物線經(jīng)過點A和點B,與x軸的另一個交點為C,動點D從點A出發(fā),以每秒1個單位長度的速度向O點運動,同時動點E從點B出發(fā),以每秒2個單位長度的速度向A點運動,設(shè)運動的時間為t秒,0﹤t﹤5.

(1)求拋物線的解析式;

(2)當(dāng)t為何值時,以A、D、E為頂點的三角形與△AOB相似;

(3)當(dāng)△ADE為等腰三角形時,求t的值;

(4)拋物線上是否存在一點F,使得以A、B、D、F為頂點的四邊形是平行四邊形?若存在,直接寫出F點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y-x-3x軸,y軸分別交于點AC,經(jīng)過點A,C的拋物線yax2+bx3x軸的另一個交點為點B(2,0),點D是拋物線上一點,過點DDEx軸于點E,連接AD,DC.設(shè)點D的橫坐標為m

(1)求拋物線的解析式;

(2)當(dāng)點D在第三象限,設(shè)△DAC的面積為S,求Sm的函數(shù)關(guān)系式,并求出S的最大值及此時點D的坐標;

(3)連接BC,若∠EAD=∠OBC,請直接寫出此時點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(DP<CP),APB=90°.將ADP沿AP翻折得到AD′P,PD′的延長線交邊AB于點M,過點BBNMPDC于點N.

(1)求證:AD2=DPPC;

(2)請判斷四邊形PMBN的形狀,并說明理由;

(3)如圖2,連接AC,分別交PM,PB于點E,F(xiàn).若=,求的值.

查看答案和解析>>

同步練習(xí)冊答案