【題目】某學校甲、乙兩名同學去愛國主義教育基地參觀,該基地與學校相距2400米.甲從學校步行去基地,出發(fā)5分鐘后乙再出發(fā),乙從學校騎自行車到基地. 乙騎行到一半時,發(fā)現(xiàn)有東西忘帶,立即返回,拿好東西之后再從學校出發(fā).在騎行過程中,乙的速度保持不變,最后甲、乙兩人同時到達基地. 已知,乙騎行的總時間是甲步行時間的.設(shè)甲步行的時間為(分),圖中線段OA表示甲離開學校的路程(米)與(分)的函數(shù)關(guān)系的圖像.圖中折線B—C—D和線段EA表示乙離開學校的路程(米)與(分)的函數(shù)關(guān)系的圖像.根據(jù)圖中所給的信息,解答下列問題:
(1)甲步行的速度和乙騎行的速度;
(2)甲出發(fā)多少時間后,甲、乙兩人第二次相遇?
(3)若(米)表示甲、乙兩人之間的距離,當時,求(米)關(guān)于(分)的函數(shù)關(guān)系式.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,.動點、分別從點、點同時出發(fā),相向而行,速度都為.以為一邊向上作正方形,過點作,交于點.設(shè)運動時間為,單位:,正方形和梯形重合部分的面積為.
當時,點與點重合.
當時,點在上.
當點在,兩點之間(不包括,兩點)時,求與之間的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點,且OC∥BD,AD與BC,OC分別相交于點E,F(xiàn),則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤△CEF≌△BED.其中一定成立的結(jié)論是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=AC=20 cm.動點P,Q分別從A,B兩點同時出發(fā),沿三角形的邊勻速運動.已知點P,點Q的速度都是2 cm/s,當點P第一次到達B點時,P,Q兩點同時停止運動.設(shè)點P的運動時間為t(s).
(1)∠A=______度;
(2)當0<t<10,且△APQ為直角三角形時,求t的值;
(3)當△APQ為等邊三角形時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店以40元/千克的單價新進一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量y (千克)與銷售單價x (元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象,求y與x的函數(shù)表達式;
(2)當銷售單價為80元/千克時,商店的利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;
(3)四邊形AA2C2C的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(-3,5),B(-2,1),C(-1,3).
(1)畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
(2)畫出△A1B1C1沿x軸向右平移4個單位長度后得到的△A2B2C2;
(3)如果AC上有一點M(a,b)經(jīng)過上述兩次變換,那么對應(yīng)A2C2上的點M2的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提倡綠色出行,某公司在我區(qū)、兩個街區(qū)分別投放了一批“共享汽車”,“共享汽車”有甲、乙不同款型.
(1)該公司在我區(qū)街區(qū)早期試點時共投放甲、乙兩種型號的“共享汽車”各20輛,投放成本共計劃110萬,其中甲型汽車的成本單價比乙型汽車少0.5萬元,求甲、乙兩型“共享汽車”的單價各是多少?
(2)該公司采取了如下的投放方式: 街區(qū)每2000人投放輛“共享汽車”,街區(qū)每2000人投放輛“共享汽車”,按照這種設(shè)放方式,街區(qū)共投放150輛,街區(qū)共投放120輛,如果兩個街區(qū)共有6萬人,試求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=8,AC=5,BC=7,點D在AB上一動點,線段CD繞點C逆時針旋轉(zhuǎn)60°得到線段CE,AE的最小值為________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com