【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),且OC∥BD,AD與BC,OC分別相交于點(diǎn)E,F(xiàn),則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤△CEF≌△BED.其中一定成立的結(jié)論是_____.(填序號(hào))
【答案】①③④
【解析】
①由直徑所對(duì)圓周角是直角,
②由于∠AOC是⊙O的圓心角,∠AEC是⊙O的圓內(nèi)部的角,
③由平行線(xiàn)得到∠OCB=∠DBC,再由同圓的半徑相等得到結(jié)論判斷出∠OBC=∠DBC;
④用半徑垂直于不是直徑的弦,必平分弦;
⑤得不到△CEF和△BED中對(duì)應(yīng)相等的邊,所以不一定全等.
①∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BD,
故①正確;
②∵∠AOC是⊙O的圓心角,∠AEC是⊙O的圓內(nèi)部的角,
∴∠AOC≠∠AEC,
故②不正確;
③∵OC∥BD,
∴∠OCB=∠DBC,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OBC=∠DBC,
∴BC平分∠ABD,
故③正確;
④∵AB是⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BD,
∵OC∥BD,
∴∠AFO=90°,
∵點(diǎn)O為圓心,
∴AF=DF,
故④正確;
⑤∵△CEF和△BED中,沒(méi)有相等的邊,
∴△CEF與△BED不全等,
故⑤不正確;
綜上可知:其中一定成立的有①③④,
故答案為:①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點(diǎn)分別為D,E
(Ⅰ)如圖①,求∠CED的大;
(Ⅱ)如圖②,當(dāng)DE=BE時(shí),求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1和圖2,是直線(xiàn)上一動(dòng)點(diǎn),兩點(diǎn)在直線(xiàn)的同側(cè),且點(diǎn)所在直線(xiàn)與不平行.
(1)當(dāng)點(diǎn)運(yùn)動(dòng)到位置時(shí),距離點(diǎn)最近,在圖1中的直線(xiàn)上畫(huà)出點(diǎn)的位置;
(2)當(dāng)點(diǎn)運(yùn)動(dòng)到位置時(shí),與點(diǎn)的距離和與點(diǎn)距兩相等,請(qǐng)?jiān)趫D2中作出位置;
(3)在直線(xiàn)上是否存在這樣一點(diǎn),使得到點(diǎn)的距離與到點(diǎn)的距離之和最?若存在請(qǐng)?jiān)趫D3中作出這點(diǎn),若不存在清說(shuō)明理由.
(要求:不寫(xiě)作法,請(qǐng)保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)E,連結(jié)DE,過(guò)點(diǎn)B作BP平行于DE,交⊙O于點(diǎn)P,連結(jié)EP、CP、OP.
(1)BD=DC嗎?說(shuō)明理由;
(2)求∠BOP的度數(shù);
(3)求證:CP是⊙O的切線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①、圖②,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),圖①和圖②中的點(diǎn)A、點(diǎn)B都是格點(diǎn).分別在圖①、圖②中畫(huà)出格點(diǎn)C,并滿(mǎn)足下面的條件:
(1)在圖①中,使∠ABC=90°.此時(shí)AC的長(zhǎng)度是 .
(2)在圖②中,使AB=AC.此時(shí)△ABC的邊AB上的高是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)概念:百度百科上這樣定義絕對(duì)值函數(shù):y=│x│=
并給出了函數(shù)的圖像(如圖).
方法遷移
借鑒研究正比例函數(shù)y=kx與一次函數(shù)y=kx+b(k,b是常數(shù),且k≠0)之間關(guān)系的經(jīng)驗(yàn),我們來(lái)研究函數(shù)y=│x+a│(a是常數(shù))的圖像與性質(zhì).
“從‘1’開(kāi)始”
我們嘗試從特殊到一般,先研究當(dāng)a=1時(shí)的函數(shù)y=│x+1│.
按照要求完成下列問(wèn)題:
(1)觀(guān)察該函數(shù)表達(dá)式,直接寫(xiě)出y的取值范圍;
(2)通過(guò)列表、描點(diǎn)、畫(huà)圖,在平面直角坐標(biāo)系中畫(huà)出該函數(shù)的圖像.
“從‘1’到一切”
(3)繼續(xù)研究當(dāng)a的值為-2,-,2,3,…時(shí)函數(shù)y=│x+a│的圖像與性質(zhì),
嘗試總結(jié):
①函數(shù)y=│x+a│(a≠0)的圖像怎樣由函數(shù)y=│x│的圖像平移得到?
②寫(xiě)出函數(shù)y=│x+a│的一條性質(zhì).
知識(shí)應(yīng)用
(4)已知A(x1,y1),B(x2,y2)是函數(shù)y=│x+a│的圖像上的任意兩點(diǎn),且滿(mǎn)足x1<x2≤-1時(shí), y1>y2,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,y關(guān)于x的二次函數(shù)是( )
A. y=ax2+bx+c B. y=x(x﹣1)
C. y= D. y=(x﹣1)2﹣x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校甲、乙兩名同學(xué)去愛(ài)國(guó)主義教育基地參觀(guān),該基地與學(xué)校相距2400米.甲從學(xué)校步行去基地,出發(fā)5分鐘后乙再出發(fā),乙從學(xué)校騎自行車(chē)到基地. 乙騎行到一半時(shí),發(fā)現(xiàn)有東西忘帶,立即返回,拿好東西之后再?gòu)膶W(xué)校出發(fā).在騎行過(guò)程中,乙的速度保持不變,最后甲、乙兩人同時(shí)到達(dá)基地. 已知,乙騎行的總時(shí)間是甲步行時(shí)間的.設(shè)甲步行的時(shí)間為(分),圖中線(xiàn)段OA表示甲離開(kāi)學(xué)校的路程(米)與(分)的函數(shù)關(guān)系的圖像.圖中折線(xiàn)B—C—D和線(xiàn)段EA表示乙離開(kāi)學(xué)校的路程(米)與(分)的函數(shù)關(guān)系的圖像.根據(jù)圖中所給的信息,解答下列問(wèn)題:
(1)甲步行的速度和乙騎行的速度;
(2)甲出發(fā)多少時(shí)間后,甲、乙兩人第二次相遇?
(3)若(米)表示甲、乙兩人之間的距離,當(dāng)時(shí),求(米)關(guān)于(分)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷(xiāo)商準(zhǔn)備把“茶路”融入“絲路”,經(jīng)計(jì)算,他銷(xiāo)售10kgA級(jí)別和20kgB級(jí)別茶葉的利潤(rùn)為4000元,銷(xiāo)售20kgA級(jí)別和10kgB級(jí)別茶葉的利潤(rùn)為3500元.
(1)求每千克A級(jí)別茶葉和B級(jí)別茶葉的銷(xiāo)售利潤(rùn);
(2)若該經(jīng)銷(xiāo)商一次購(gòu)進(jìn)兩種級(jí)別的茶葉共200kg用于出口,其中B級(jí)別茶葉的進(jìn)貨量不超過(guò)A級(jí)別茶葉的2倍,請(qǐng)你幫該經(jīng)銷(xiāo)商設(shè)計(jì)一種進(jìn)貨方案使銷(xiāo)售總利潤(rùn)最大,并求出總利潤(rùn)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com