【題目】“一帶一路”讓中國(guó)和世界更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈A射線從AM開始順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線從BP開始順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是每秒2度,燈B轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.
(1)填空:∠BAN=_____°;
(2)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射線才開始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?
(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前.若射出的光束交于點(diǎn)C,過C作∠ACD交PQ于點(diǎn)D,且∠ACD=120°,則在轉(zhuǎn)動(dòng)過程中,請(qǐng)?zhí)骄?/span>∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說明理由.
【答案】60
【解析】分析:(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度數(shù);
(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,分兩種情況進(jìn)行討論:當(dāng)0<t<90時(shí),根據(jù)2t=1(30+t),可得 t=30;當(dāng)90<t<150時(shí),根據(jù)1(30+t)+(2t﹣180)=180,可得t=110;
(3)設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,根據(jù)∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,據(jù)此可得∠BAC和∠BCD關(guān)系不會(huì)變化.
詳解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°.
故答案為:60;
(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,
①當(dāng)0<t<90時(shí),如圖1.
∵PQ∥MN,∴∠PBD=∠BDA.
∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD
∴2t=1(30+t),解得 t=30;
②當(dāng)90<t<150時(shí),如圖2.
∵PQ∥MN,∴∠PBD+∠BDA=180°.
∵AC∥BD,∴∠CAN=∠BDA
∴∠PBD+∠CAN=180°
∴1(30+t)+(2t﹣180)=180,解得 t=110.
綜上所述:當(dāng)t=30秒或110秒時(shí),兩燈的光束互相平行;
(3)∠BAC和∠BCD關(guān)系不會(huì)變化.
理由:設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,
∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°.
又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD關(guān)系不會(huì)變化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,E是AD上一點(diǎn),AE=AB,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.
(1)如圖①,當(dāng)EF與AB相交時(shí),若∠EAB=60°,求證:EG=AG+BG;
(2)如圖②,當(dāng)EF與CD相交時(shí),且∠EAB=90°,請(qǐng)你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校120名學(xué)生某一周用于閱讀課外書籍的時(shí)間的頻率分布直方圖如圖所示.其中閱讀時(shí)間是8~10小時(shí)的頻數(shù)和頻率分別是( )
A. 15和0.125 B. 15和0.25 C. 30和0.125 D. 30和0.25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
A | B | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 400 | 280 |
某中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送七年級(jí)師生到基地校參加社會(huì)實(shí)踐活動(dòng).設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
車輛數(shù)(輛) | 載客量 | 租金(元) | |
A | x | 45x | 400x |
B | 5﹣x |
|
|
(2)若要保證租車費(fèi)用不超過1900元,求x的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是□ABCD的一條對(duì)角線,BM⊥AC, DN⊥AC,垂足分別為M,N,四邊形BMDN是平行四邊形嗎?請(qǐng)選擇一種你認(rèn)為比較好的方法證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】放風(fēng)箏是大家喜愛的一種運(yùn)動(dòng).星期天的上午小明在大洲廣場(chǎng)上放風(fēng)箏.如圖他在A處時(shí)不小心讓風(fēng)箏掛在了一棵樹的樹梢上,風(fēng)箏固定在了D處.此時(shí)風(fēng)箏線AD與水平線的夾角為30°. 為了便于觀察.小明迅速向前邊移動(dòng)邊收線到達(dá)了離A處7米的B處,此時(shí)風(fēng)箏線BD與水平線的夾角為45°.已知點(diǎn)A、B、C在冋一條直線上,∠ACD=90°.請(qǐng)你求出小明此吋所收回的風(fēng)箏線的長(zhǎng)度是多少米?(本題中風(fēng)箏線均視為線段, ≈1.414, ≈1.732.最后結(jié)果精確到1米)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com