【題目】已知△ABC中,∠BCA=90°,BC=AC,D是BA邊上一點(diǎn)(點(diǎn)D不與A,B重合),M是CA中點(diǎn),當(dāng)以CD為直徑的⊙O與BA邊交于點(diǎn)N,⊙O與射線NM交于點(diǎn)E,連接CE,DE.
(1)求證:BN=AN;
(2)猜想線段CD與DE的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】
(1)證明:∵CD為⊙O的直徑,
∴∠CND=90°,
∴CN⊥AB,
∵BC=AC,
∴BN=AN;
(2)解:CD= DE,
理由如下:∵△ABC中,∠BCA=90°,BN=AN,
∴CN=AN,
∵點(diǎn)M是CA中點(diǎn),
∴NM平分∠CNA,
∵∠CNA=90°,
∴∠CNM=45°,
∴∠CDE=∠CNE=45°,
∵CD為⊙O的直徑,
∴∠CED=90°,
∴∠DCE=45°=∠CDE,
∴DE=CE,
∵CE2+DE2=CD2,
∴CD= DE
【解析】(1)根據(jù)圓周角定理求出∠CND=90°,根據(jù)等腰三角形的性質(zhì)得出即可;(2)根據(jù)直角三角形斜邊上中線性質(zhì)求出CN=AN,根據(jù)等腰三角形性質(zhì)求出∠CNM=45°,根據(jù)圓周角定理求出∠CED=90°,∠CDE=∠CNE=45°,根據(jù)勾股定理求出即可.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和直角三角形斜邊上的中線的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)于概率的敘述正確的是( 。
A.某運(yùn)動(dòng)員投籃5次,投中4次,投中的概率為0.8
B.任意拋擲一枚硬幣兩次,結(jié)果是兩個(gè)都是正面的概率是
C.數(shù)學(xué)選擇題,四個(gè)選擇支中有且只有一個(gè)正確,如果從中任選一個(gè),選對(duì)的概率為
D.飛機(jī)失事死亡的概率為0.000000000038,因此乘飛機(jī)失事而死亡是不可能事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(﹣2,0)、B(4,0)、C(3,3)在拋物線y=ax2+bx+c上,點(diǎn)D在y軸上,且DC⊥BC,∠BCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)后兩邊與x軸、y軸分別相交于點(diǎn)E、F.
(1)求拋物線的解析式;
(2)CF能否經(jīng)過(guò)拋物線的頂點(diǎn)?若能,求出此時(shí)點(diǎn)E的坐標(biāo);若不能,說(shuō)明理由;
(3)若△FDC是等腰三角形,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,P(a,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)平移得到△A1B1C1,且點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(a+5,b+4).
(1)寫出△A1B1C1的三個(gè)頂點(diǎn)的坐標(biāo);
(2)求△ABC的面積;
(3)請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出△A1B1C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對(duì)知識(shí)拓展,體育特長(zhǎng)、藝術(shù)特長(zhǎng)和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)求扇形統(tǒng)計(jì)圖中m的值;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該校有800名學(xué)生,計(jì)劃開(kāi)設(shè)“實(shí)踐活動(dòng)類”課程每班安排人,問(wèn)學(xué)校開(kāi)設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級(jí)比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知直線PQ∥MN,點(diǎn)A在直線PQ上,點(diǎn)C,D在直線MN上,連接AC,AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE與CE相交于點(diǎn)E.
(1)求∠AEC的度數(shù);
(2)若將圖①中的線段AD沿MN向右平移到A1D1如圖②所示位置,此時(shí)A1E平分∠AA1D1,
CE平分∠ACD1,A1E與CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度數(shù);
(3)若將圖①中的線段AD沿MN向左平移到A1D1如圖③所示位置,其他條件與(2)相同,求此時(shí)∠A1EC的度數(shù)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)把數(shù)軸補(bǔ)充完整;
(2)在數(shù)軸上表示下列各數(shù): 3, , , ;
(3)用“<”連接起來(lái).________________________________;
(4)與之間的距離是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一汽車在某一直線道路上行駛,該車離出發(fā)地的距離s(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示(折線ABCDE),根據(jù)圖中提供的信息,下列說(shuō)法不正確的是( )
A. 汽車在行駛途中停留了0.5小時(shí)
B. 汽車在行駛途中的平均速度為千米/小時(shí)
C. 汽車共行駛了240千米
D. 汽車自出發(fā)后3小時(shí)至4.5小時(shí)之間行駛的速度是80千米/小時(shí)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com