【題目】如圖,在Rt△ABC中,∠B=90°,AC=120cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒.過點(diǎn)DDFBC于點(diǎn)F,連接DE,EF.當(dāng)四邊形AEFD是菱形時(shí),t的值為( )

A. 20秒 B. 18秒 C. 12 D. 6秒

【答案】A

【解析】∵直角ABC,C=90°A=30°.

CD=4t,AE=2t,

又∵在直角CDF,C=30°,

DF=12CD=2t,

DFBC

∴∠CFD=90°

∵∠B=90°

∴∠B=CFD

DFAB,

(1)得:DF=AE=2t,

∴四邊形AEFD是平行四邊形,

當(dāng)AD=AE時(shí),四邊形AEFD是菱形,

1204t=2t,

解得:t=20,

即當(dāng)t=20時(shí),AEFD是菱形;

故選A.

點(diǎn)睛:用菱形的性質(zhì)進(jìn)行計(jì)算或證明時(shí),一般是根據(jù)菱形的性質(zhì),將有關(guān)的邊、角的求解問題,轉(zhuǎn)化到邊上,再利用相等等條件求解,從而解決問題.本題中易證四邊形AEFD是平行四邊形,當(dāng)AD=AE時(shí),四邊形AEFD是菱形,據(jù)此即可列方程求得t的值;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:2002×1998= _____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列長度的三條線段為邊,能組成直角三角形的是(  )

A. 6,78B. 2,3,4C. 34,6D. 68,10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形不一定具有的性質(zhì)是( 。

A. 對(duì)角線互相平分B. 對(duì)角線互相垂直

C. 對(duì)角線相等D. 是軸對(duì)稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:

①4ac-b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠-1),

其中正確結(jié)論的個(gè)數(shù)是(

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)等腰三角形的兩邊長分別為4,8,則它的周長為(
A.12
B.16
C.20
D.16或20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(-3)-(-9)的結(jié)果等于( )

A. 6 B. 12 C. -12 D. -6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MON=30°,點(diǎn)A1A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,A1B1A2、A2B2A3A3B3A4…均為等邊三角形,從左起第1個(gè)等邊三角形的邊長記為a1,第2個(gè)等邊三角形的邊長記為a2,以此類推.若OA1=1,則a2017= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,-1)、B(-1,1)、C(0,-2).

(1)點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱的點(diǎn)的坐標(biāo)為 ( );

(2)將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的A1B1C

(3)求過點(diǎn)B、B1的一次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案